zoukankan      html  css  js  c++  java
  • [POJ] 1797 Heavy Transportation

    Heavy Transportation

    Time Limit: 3000MS   Memory Limit: 30000K
    Total Submissions: 19039   Accepted: 5084

    Description

    Background 
    Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight. 
    Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know. 

    Problem 
    You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's place). You may assume that there is at least one path. All streets can be travelled in both directions.

    Input

    The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

    Output

    The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for the scenario with a blank line.

    Sample Input

    1
    3 3
    1 2 3
    1 3 4
    2 3 5
    

    Sample Output

    Scenario #1:
    4
    

    Source

    TUD Programming Contest 2004, Darmstadt, Germany
     
     
    题解:无向图,每条边有一个最大载重量,汽车不得超过此载重量。求从1到n汽车最多能运的货物重量。根据数据规模和题意,用spfa即可。维护一个数组dist[i]定义为在i点时汽车最大载重。初始化dist[i]=-1;dist[1]=MAX_NUMBER 松弛为dist[u]=max(dist[u],min(dist[v],cost[u][v])),v点到u点。
    特别注意一下输出格式,两个case输出中间有空行。
     
    代码:
      1 #include<stdio.h>
      2 #include<stdbool.h>
      3 #include<limits.h>
      4 #include<string.h>
      5 int i,j,n,m,tot,
      6     toit[110000],next[110000],list[1100],cost[110000],
      7     q[500000],dist[110000];
      8 
      9 bool can[1100];
     10 
     11 int 
     12 pre()
     13 {
     14     memset(toit,0,sizeof(toit));
     15     memset(next,0,sizeof(next));
     16     memset(list,0,sizeof(list));
     17     memset(q,0,sizeof(q));
     18     memset(cost,0,sizeof(cost));
     19     memset(can,true,sizeof(can));
     20     memset(dist,255,sizeof(dist));
     21     tot=0;
     22     return 0;
     23 }
     24 int 
     25 min(int a,int b)
     26 {
     27     if(a<b) return(a);
     28     else return(b);
     29 }
     30 
     31 int 
     32 add(int x,int y,int z)
     33 {
     34     tot++;
     35     toit[tot]=y;
     36     next[tot]=list[x];
     37     cost[tot]=z;
     38     list[x]=tot;
     39     
     40     tot++;
     41     toit[tot]=x;
     42     next[tot]=list[y];
     43     cost[tot]=z;
     44     list[y]=tot;
     45     return 0;
     46 }
     47 
     48 int 
     49 init()
     50 {
     51     int x,y,z;
     52     scanf("%d%d
    ",&n,&m);
     53     for(i=1;i<=m;i++)
     54     {
     55         scanf("%d%d%d",&x,&y,&z);
     56         add(x,y,z);
     57     }
     58     return 0;
     59 }
     60 
     61 int 
     62 spfa(int s)
     63 {
     64     int i,head,tail,k,v;
     65     head=0;tail=1;
     66     q[1]=s;
     67     can[s]=false;
     68     dist[s]=3511111;
     69     
     70     while(head!=tail)
     71     {
     72         head=head%500000+1;
     73         v=q[head];
     74         k=list[v];
     75         
     76         while(k!=0)
     77         {
     78             if(min(dist[v],cost[k])>dist[toit[k]])
     79             {
     80                 dist[toit[k]]=min(dist[v],cost[k]);
     81                 if(can[toit[k]])
     82                 {
     83                     tail=tail%500000+1;
     84                     q[tail]=toit[k];
     85                     can[toit[k]]=false;
     86                 }
     87             }
     88             k=next[k];
     89         }
     90         can[v]=true;
     91     }
     92     return 0;
     93 }
     94 
     95 int 
     96 main()
     97 {
     98     int ca,num,ci;
     99     num=0;
    100     scanf("%d
    ",&ci);
    101     
    102     for(ca=1;ca<=ci;ca++)
    103     {
    104         pre();
    105         init();
    106         spfa(1);
    107     
    108         printf("Scenario #%d:
    %d
    ",ca,dist[n]);
    109         printf("
    ");
    110     }
    111     return 0;
    112 }
    113     
    114     
     
     
  • 相关阅读:
    ElasticSearch基础之批量操作(mget+mbulk)
    ElasticSearch基础+文档CRUD操作
    Flask_restful 插件实战笔记——基本概念与使用
    Django rest framework之序列化小结
    我所理解的Restful API最佳实践
    ElasticSearch入门及核心概念介绍
    生产环境下Flask项目目录构建
    利用linq的Take Skip方法解决 集合拆分的问题
    Oracle trunc() 函数处理数字、日期的整理
    左连接条件与where条件的区别
  • 原文地址:https://www.cnblogs.com/sxiszero/p/3618315.html
Copyright © 2011-2022 走看看