zoukankan      html  css  js  c++  java
  • [UVA] 10167

     Problem G. Birthday Cake 

    Background

    Lucy and Lily are twins. Today is their birthday. Mother buys a birthday cake for them.Now we put the cake onto a Descartes coordinate. Its center is at (0,0), and the cake's length of radius is 100.

    There are 2N (N is a integer, 1<=N<=50) cherries on the cake. Mother wants to cut the cake into two halves with a knife (of course a beeline). The twins would like to be treated fairly, that means, the shape of the two halves must be the same (that means the beeline must go through the center of the cake) , and each half must have N cherrie(s). Can you help her?

    Note: the coordinate of a cherry (x , y) are two integers. You must give the line as form two integers A,B(stands for Ax+By=0), each number in the range [-500,500]. Cherries are not allowed lying on the beeline. For each dataset there is at least one solution.

    Input

    The input file contains several scenarios. Each of them consists of 2 parts: The first part consists of a line with a number N, the second part consists of 2N lines, each line has two number, meaning (x,y) .There is only one space between two border numbers. The input file is ended with N=0.

    Output

    For each scenario, print a line containing two numbers A and B. There should be a space between them. If there are many solutions, you can only print one of them.

    Sample Input

    2
    -20 20
    -30 20
    -10 -50
    10 -5
    0

    Sample Output

    0 1

    题解:暴力枚举+线性规划。A、B都是整数且范围为[-500,500],1<=N<=50,所以暴力枚举即可。统计一下直线一侧点的数目是否为N。注意有点在直线上的情况是不合法的。

    代码:
     1 #include<stdio.h>
     2 #include<string.h>
     3 #include<stdbool.h>
     4 
     5 int i,j,n,m,sum,
     6     a[110],b[110];
     7 
     8 int 
     9 init()
    10 {
    11     int i;
    12     m=2*n;
    13     for(i=1;i<=m;i++)
    14     scanf("%d%d",&a[i],&b[i]);
    15     
    16     return 0;
    17 }
    18 
    19 int 
    20 main()
    21 {
    22     int i,j,k,f;
    23     while(true)
    24     {
    25         scanf("%d",&n);
    26         if(n==0) break;
    27         init();
    28         f=0;
    29         for(i=-500;i<=500;i++)
    30         {
    31             for(j=-500;j<=500;j++)
    32             {
    33                  sum=0;
    34                 for(k=1;k<=m;k++)
    35                 {
    36                     if((i*a[k]+j*b[k])<0) sum++;
    37                     if((i*a[k]+j*b[k])==0) break;
    38                 }
    39                 if(sum==n)
    40                 {
    41                      f=1;
    42                      printf("%d %d
    ",i,j);
    43                      break;
    44                  }
    45              }
    46              if(f==1) break;
    47          }
    48     }
    49     
    50     return 0;
    51 }
    52             
     
  • 相关阅读:
    RMI几种公布和引用服务的方式
    mysql 多日志表结果集合拼接存储过程
    USRP通信的结构体和常量(上位机、下位机共用)
    Flash Builder4破解步骤
    leetcode 217 Contains Duplicate 数组中是否有反复的数字
    关于权限表的基本设计
    Objective-C之成魔之路【7-类、对象和方法】
    vs2008C1902程序数据库管理不匹配
    配置hadoop集群一
    BZOJ 2338 HNOI2011 数矩形 计算几何
  • 原文地址:https://www.cnblogs.com/sxiszero/p/3695301.html
Copyright © 2011-2022 走看看