zoukankan      html  css  js  c++  java
  • [POJ] 3264 Balanced Lineup [ST算法]

    Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 34306   Accepted: 16137
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    Source

     
    题解:典型的RMQ问题。Sparse-Table算法的应用。预处理时间复杂度O(nlogn),查询时间复杂度O(1);
     
    代码:
     1 #include<stdio.h>
     2 #include<string.h>
     3 #include<math.h>
     4 #include<ctype.h>
     5 #include<stdlib.h>
     6 #include<stdbool.h>
     7 
     8 #define rep(i,a,b)      for(i=(a);i<=(b);i++)
     9 #define clr(x,y)        memset(x,y,sizeof(x))
    10 #define sqr(x)          (x*x)
    11 #define LL              long long
    12 
    13 int i,j,n,m,x,y,q,maxn,minn,
    14     d[51000][50],f[51000][50];
    15 
    16 int min(int a,int b)
    17 {
    18     if(a<b) return a;
    19     return b;
    20 }
    21 
    22 int max(int a, int b)
    23 {
    24     if(a>b) return a;
    25     return b;
    26 }
    27 
    28 int RMQ_init()
    29 {
    30     int i;
    31     
    32     for(j=1;(1<<j)<=n;j++)
    33         for(i=1;i+(1<<j)-1<=n;i++) {
    34         d[i][j]=min(d[i][j-1],d[i+(1<<(j-1))][j-1]);
    35         f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1]);
    36     }
    37 }
    38 
    39 int RMQ(int L,int R)
    40 {
    41     int k=0;
    42     
    43     while(1<<(k+1)<=R-L+1) k++;
    44     minn=min(d[L][k],d[R-(1<<k)+1][k]);
    45     maxn=max(f[L][k],f[R-(1<<k)+1][k]);
    46 }
    47 
    48 int main()
    49 {
    50     int i;
    51     
    52     clr(d,3); 
    53     clr(f,-1); 
    54     scanf("%d%d",&n,&q);
    55     rep(i,1,n) {
    56         scanf("%d",&d[i][0]);
    57         f[i][0]=d[i][0];
    58     }
    59 
    60     RMQ_init();
    61     
    62     while(q--) {
    63         scanf("%d%d",&x,&y);
    64         RMQ(x,y);
    65         printf("%d
    ",maxn-minn);
    66     }
    67     
    68     return 0;
    69 }
  • 相关阅读:
    2015 浙江省赛 H
    2015 浙江省赛 H
    2015 浙江省赛 Beauty of Array (思维题)
    2015 浙江省赛 Beauty of Array (思维题)
    山区建小学(区间DP)
    山区建小学(区间DP)
    Hanoi双塔问题(递推)
    Hanoi双塔问题(递推)
    组合的输出(递归)
    组合的输出(递归)
  • 原文地址:https://www.cnblogs.com/sxiszero/p/3911160.html
Copyright © 2011-2022 走看看