zoukankan      html  css  js  c++  java
  • POJ 2387 Til the Cows Come Home

    Description:

    Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible. 

    Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it. 

    Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

    Input:

    * Line 1: Two integers: T and N 

    * Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

    Output:

    * Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

    Sample Input:

    5 5
    1 2 20
    2 3 30
    3 4 20
    4 5 20
    1 5 100

    Sample Output:

    90

    Hint:

    INPUT DETAILS: 

    There are five landmarks. 

    OUTPUT DETAILS: 

    Bessie can get home by following trails 4, 3, 2, and 1.
     
    题意:有n个点,m条边,现在问奶牛从第n个点到第一个点的最短路径是多少,也就是1~n的最短路径,(毕竟路是双向的,这里发现,POJ好喜欢奶牛的啊~~),直接套用模板中的任何一个就行了。
    #include<stdio.h>
    #include<queue>
    #include<algorithm>
    using namespace std;
    
    const int N=1010;
    const int INF=0x3f3f3f3f;
    
    int G[N][N], dist[N], vis[N], n;
    
    void Init()
    {
        int i, j;
    
        for (i = 1; i <= n; i++)
        {
            dist[i] = INF;
            vis[i] = 0;
            for (j = 1; j <= n; j++)
                G[i][j] = INF;
            G[i][i] = 0;
        }
    }
    
    void Spfa(int u)
    {
        int i, v;
        queue<int>Q;
    
        Q.push(u);
        dist[u] = 0;
    
        while (!Q.empty())
        {
            v = Q.front(); Q.pop();
    
            for (i = 1; i <= n; i++)
            {
                if (dist[i] > dist[v] + G[v][i])
                {
                    dist[i] = dist[v]+G[v][i];
    
                    if (!vis[i])
                    {
                        Q.push(i);
                        vis[i] = 1;
                    }
                }
            }
    
            vis[v] = 0;
        }
    }
    
    int main ()
    {
        int m, a, b, c;
    
        while (scanf("%d%d", &m, &n) != EOF)
        {
            Init();
    
            while (m--)
            {
                scanf("%d%d%d", &a, &b, &c);
    
                G[a][b] = min(G[a][b], c);
                G[b][a] = G[a][b];
            }
    
            Spfa(1);
    
            printf("%d
    ", dist[n]);
        }
    
        return 0;
    }
  • 相关阅读:
    Redis分布式缓存系列(六)- Redis中的List类型
    Redis分布式缓存系列(五)- Redis中的ZSet类型
    Redis分布式缓存系列(四)- Redis中的Set类型
    Redis分布式缓存系列(三)- Redis中的Hash类型
    Redis分布式缓存系列(二)- Redis中的String类型以及使用Redis解决订单秒杀超卖问题
    Redis分布式缓存系列(一)- Redis客户端及服务端的安装
    .NET中常用的数据结构
    面向对象23种设计模式系列(四)- 迭代器模式
    .NET中的本地缓存(数据分拆+lock锁)
    .NET中的GC垃圾回收
  • 原文地址:https://www.cnblogs.com/syhandll/p/4812448.html
Copyright © 2011-2022 走看看