zoukankan      html  css  js  c++  java
  • POJ 3660 Cow Contest

    Description:

    N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.

    The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ NA≠ B), then cow A will always beat cow B.

    Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.

    Input:

    * Line 1: Two space-separated integers: N and M
    * Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B

    Output:

    * Line 1: A single integer representing the number of cows whose ranks can be determined
     

    Sample Input:

    5 5
    4 3
    4 2
    3 2
    1 2
    2 5
    

    Sample Output:

    2
    题意:有些奶牛的遗传因子比较好,导致它的能力比较强,现在有n头奶牛,告诉你m对奶牛的能力比较结果,输入a和b,表示a的能力比b的强,那么最终可以确定名次的奶牛个数是多少。(又是奶牛,真是偏爱啊~~)
    分析一下,我们先进行一下最短路径的计算(用Floyd算法最合适),那么只要G[i][j]不为INF,就代表i的能力比j的强,那么当不为INF都情况=n-1时,表明这个奶牛和其它奶牛的关系确定了,那么它的名次也就出来了,统计这样的奶牛个数就OK了。
    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    using namespace std;
    
    const int N=110;
    const int INF=0x3f3f3f3f;
    
    int G[N][N], n;
    
    void Init()
    {
        int i, j;
    
        for (i = 1; i <= n; i++)
        {
            for (j = 1; j <= n; j++)
                G[i][j] = INF;
            G[i][i] = 0;
        }
    }
    
    void Dist() ///用Floyd算法可以将每两个奶牛的关系表示出来
    {
        int i, j, k;
    
        for (k = 1; k <= n; k++)
        {
            for (i = 1; i <= n; i++)
            {
                for (j = 1; j <= n; j++)
                    G[i][j] = min(G[i][j], G[i][k]+G[k][j]);
            }
        }
    }
    
    int main ()
    {
        int m, a, b, c[N], ans, i, j;
    
        while (scanf("%d%d", &n, &m) != EOF)
        {
            Init();
            memset(c, 0, sizeof(c)); ///c数组保存确定关系的次数
            ans = 0;
    
            while (m--)
            {
                scanf("%d%d", &a, &b);
                G[a][b] = 1;
            }
    
            Dist();
    
            for (i = 1; i <= n; i++)
            {
                for (j = 1; j <= n; j++)
                {
                    if (G[i][j] != INF && i != j) ///要是相等了就没有意义了
                    {
                        c[i]++;
                        c[j]++;
                    }
                }
            }
    
            for (i = 1; i <= n; i++)
            {
                if (c[i] == n-1)
                    ans++;
            }
    
            printf("%d
    ", ans);
        }
    
        return 0;
    }
  • 相关阅读:
    python基础一 day41 IO模型 非阻塞IO
    python基础一 day41 协程
    python基础一 day41 复习
    python基础一 day40 条件 定时器 队列 线程池
    python基础一 day40 线程锁 信号量 事件
    第三章
    第二章
    第一章
    计算机基础知识
    scrapy安装方法
  • 原文地址:https://www.cnblogs.com/syhandll/p/4813002.html
Copyright © 2011-2022 走看看