Description:
N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.
The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A≠ B), then cow A will always beat cow B.
Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.
Input:
* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B
Output:
* Line 1: A single integer representing the number of cows whose ranks can be determined
Sample Input:
5 5 4 3 4 2 3 2 1 2 2 5
Sample Output:
2
题意:有些奶牛的遗传因子比较好,导致它的能力比较强,现在有n头奶牛,告诉你m对奶牛的能力比较结果,输入a和b,表示a的能力比b的强,那么最终可以确定名次的奶牛个数是多少。(又是奶牛,真是偏爱啊~~)
分析一下,我们先进行一下最短路径的计算(用Floyd算法最合适),那么只要G[i][j]不为INF,就代表i的能力比j的强,那么当不为INF都情况=n-1时,表明这个奶牛和其它奶牛的关系确定了,那么它的名次也就出来了,统计这样的奶牛个数就OK了。
#include<stdio.h> #include<string.h> #include<algorithm> using namespace std; const int N=110; const int INF=0x3f3f3f3f; int G[N][N], n; void Init() { int i, j; for (i = 1; i <= n; i++) { for (j = 1; j <= n; j++) G[i][j] = INF; G[i][i] = 0; } } void Dist() ///用Floyd算法可以将每两个奶牛的关系表示出来 { int i, j, k; for (k = 1; k <= n; k++) { for (i = 1; i <= n; i++) { for (j = 1; j <= n; j++) G[i][j] = min(G[i][j], G[i][k]+G[k][j]); } } } int main () { int m, a, b, c[N], ans, i, j; while (scanf("%d%d", &n, &m) != EOF) { Init(); memset(c, 0, sizeof(c)); ///c数组保存确定关系的次数 ans = 0; while (m--) { scanf("%d%d", &a, &b); G[a][b] = 1; } Dist(); for (i = 1; i <= n; i++) { for (j = 1; j <= n; j++) { if (G[i][j] != INF && i != j) ///要是相等了就没有意义了 { c[i]++; c[j]++; } } } for (i = 1; i <= n; i++) { if (c[i] == n-1) ans++; } printf("%d ", ans); } return 0; }