zoukankan      html  css  js  c++  java
  • python 生成器和迭代器有这篇就够了

    PS:这篇博客是我上网课做的笔记,也是参考网课老师的博客,就是学习笔记而已,不喜勿喷!(为什么写这句话呢?被喷子恶心到了)

      本节主要记录一下列表生成式,生成器和迭代器的知识点

      列表生成器

      首先举个例子

    现在有个需求,看列表 [0,1,2,3,4,5,6,7,8,9],要求你把列表里面的每个值加1,你怎么实现呢?

    方法一(简单):

    info = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
    b = []
    # for index,i in enumerate(info):
    #     print(i+1)
    #     b.append(i+1)
    # print(b)
    for index,i in enumerate(info):
        info[index] +=1
    print(info)
    

    方法二(一般):

    info = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
    a = map(lambda x:x+1,info)
    print(a)
    for i in a:
        print(i)
    

    方法三(高级):

    info = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
    a = [i+1 for i in range(10)]
    print(a)
    

      生成器

    什么是生成器?

      通过列表生成式,我们可以直接创建一个列表,但是,受到内存限制,列表容量肯定是有限的,而且创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

      所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间,在Python中,这种一边循环一边计算的机制,称为生成器:generator

      生成器是一个特殊的程序,可以被用作控制循环的迭代行为,python中生成器是迭代器的一种,使用yield返回值函数,每次调用yield会暂停,而可以使用next()函数和send()函数恢复生成器。

      生成器类似于返回值为数组的一个函数,这个函数可以接受参数,可以被调用,但是,不同于一般的函数会一次性返回包括了所有数值的数组,生成器一次只能产生一个值,这样消耗的内存数量将大大减小,而且允许调用函数可以很快的处理前几个返回值,因此生成器看起来像是一个函数,但是表现得却像是迭代器

    python中的生成器

      要创建一个generator,有很多种方法,第一种方法很简单,只有把一个列表生成式的[]中括号改为()小括号,就创建一个generator

      举例如下:

    #列表生成式
    lis = [x*x for x in range(10)]
    print(lis)
    #生成器
    generator_ex = (x*x for x in range(10))
    print(generator_ex)
    
    结果:
    [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
    <generator object <genexpr> at 0x000002A4CBF9EBA0>
    

      那么创建list和generator_ex,的区别是什么呢?从表面看就是[  ]和(),但是结果却不一样,一个打印出来是列表(因为是列表生成式),而第二个打印出来却是<generator object <genexpr> at 0x000002A4CBF9EBA0>,那么如何打印出来generator_ex的每一个元素呢?

      如果要一个个打印出来,可以通过next()函数获得generator的下一个返回值:

    #生成器
    generator_ex = (x*x for x in range(10))
    print(next(generator_ex))
    print(next(generator_ex))
    print(next(generator_ex))
    print(next(generator_ex))
    print(next(generator_ex))
    print(next(generator_ex))
    print(next(generator_ex))
    print(next(generator_ex))
    print(next(generator_ex))
    print(next(generator_ex))
    print(next(generator_ex))
    结果:
    0
    1
    4
    9
    16
    25
    36
    49
    64
    81
    Traceback (most recent call last):
    
      File "列表生成式.py", line 42, in <module>
    
        print(next(generator_ex))
    
    StopIteration
    

      大家可以看到,generator保存的是算法,每次调用next(generaotr_ex)就计算出他的下一个元素的值,直到计算出最后一个元素,没有更多的元素时,抛出StopIteration的错误,而且上面这样不断调用是一个不好的习惯,正确的方法是使用for循环,因为generator也是可迭代对象:

    #生成器
    generator_ex = (x*x for x in range(10))
    for i in generator_ex:
        print(i)
        
    结果:
    0
    1
    4
    9
    16
    25
    36
    49
    64
    81
    

      所以我们创建一个generator后,基本上永远不会调用next(),而是通过for循环来迭代,并且不需要关心StopIteration的错误,generator非常强大,如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

    比如著名的斐波那契数列,除第一个和第二个数外,任何一个数都可以由前两个相加得到:

    1,1,2,3,5,8,12,21,34.....

    斐波那契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

    #fibonacci数列
    def fib(max):
        n,a,b =0,0,1
        while n < max:
            a,b =b,a+b
            n = n+1
            print(a)
        return 'done'
    
    a = fib(10)
    print(fib(10))
    

      a,b = b ,a+b  其实相当于 t =a+b ,a =b ,b =t  ,所以不必写显示写出临时变量t,就可以输出斐波那契数列的前N个数字。上面输出的结果如下:

    1
    1
    2
    3
    5
    8
    13
    21
    34
    55
    1
    1
    2
    3
    5
    8
    13
    21
    34
    55
    done
    

      仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

      也就是说上面的函数也可以用generator来实现,上面我们发现,print(b)每次函数运行都要打印,占内存,所以为了不占内存,我们也可以使用生成器,这里叫yield。如下:

    def fib(max):
        n,a,b =0,0,1
        while n < max:
            yield b
            a,b =b,a+b
            n = n+1
        return 'done'
    
    a = fib(10)
    print(fib(10))
    

      但是返回的不再是一个值,而是一个生成器,和上面的例子一样,大家可以看一下结果:

    <generator object fib at 0x000001C03AC34FC0>
    

      那么这样就不占内存了,这里说一下generator和函数的执行流程,函数是顺序执行的,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次被next()调用时候从上次的返回yield语句处急需执行,也就是用多少,取多少,不占内存。

    def fib(max):
        n,a,b =0,0,1
        while n < max:
            yield b
            a,b =b,a+b
            n = n+1
        return 'done'
    
    a = fib(10)
    print(fib(10))
    print(a.__next__())
    print(a.__next__())
    print(a.__next__())
    print("可以顺便干其他事情")
    print(a.__next__())
    print(a.__next__())
    
    结果:
    <generator object fib at 0x0000023A21A34FC0>
    1
    1
    2
    可以顺便干其他事情
    3
    5
    

      在上面fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

    def fib(max):
        n,a,b =0,0,1
        while n < max:
            yield b
            a,b =b,a+b
            n = n+1
        return 'done'
    for i in fib(6):
        print(i)
        
    结果:
    1
    1
    2
    3
    5
    8
    

      但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果拿不到返回值,那么就会报错,所以为了不让报错,就要进行异常处理,拿到返回值,如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

    def fib(max):
        n,a,b =0,0,1
        while n < max:
            yield b
            a,b =b,a+b
            n = n+1
        return 'done'
    g = fib(6)
    while True:
        try:
            x = next(g)
            print('generator: ',x)
        except StopIteration as e:
            print("生成器返回值:",e.value)
            break
    
    
    结果:
    generator:  1
    generator:  1
    generator:  2
    generator:  3
    generator:  5
    generator:  8
    生成器返回值: done
    

    还可以通过yield实现在单线程的情况下实现并发运算的效果

    import time
    def consumer(name):
        print("%s 准备学习啦!" %name)
        while True:
           lesson = yield
    
           print("开始[%s]了,[%s]老师来讲课了!" %(lesson,name))
    
    
    def producer(name):
        c = consumer('A')
        c2 = consumer('B')
        c.__next__()
        c2.__next__()
        print("同学们开始上课 了!")
        for i in range(10):
            time.sleep(1)
            print("到了两个同学!")
            c.send(i)
            c2.send(i)
    
    结果:
    A 准备学习啦!
    B 准备学习啦!
    同学们开始上课 了!
    到了两个同学!
    开始[0]了,[A]老师来讲课了!
    开始[0]了,[B]老师来讲课了!
    到了两个同学!
    开始[1]了,[A]老师来讲课了!
    开始[1]了,[B]老师来讲课了!
    到了两个同学!
    开始[2]了,[A]老师来讲课了!
    开始[2]了,[B]老师来讲课了!
    到了两个同学!
    开始[3]了,[A]老师来讲课了!
    开始[3]了,[B]老师来讲课了!
    到了两个同学!
    开始[4]了,[A]老师来讲课了!
    开始[4]了,[B]老师来讲课了!
    到了两个同学!
    开始[5]了,[A]老师来讲课了!
    开始[5]了,[B]老师来讲课了!
    到了两个同学!
    开始[6]了,[A]老师来讲课了!
    开始[6]了,[B]老师来讲课了!
    到了两个同学!
    

      由上面的例子我么可以发现,python提供了两种基本的方式

       生成器函数:也是用def定义的,利用关键字yield一次性返回一个结果,阻塞,重新开始

       生成器表达式:返回一个对象,这个对象只有在需要的时候才产生结果

    ——生成器函数

    为什么叫生成器函数?因为它随着时间的推移生成了一个数值队列。一般的函数在执行完毕之后会返回一个值然后退出,但是生成器函数会自动挂起,然后重新拾起急需执行,他会利用yield关键字关起函数,给调用者返回一个值,同时保留了当前的足够多的状态,可以使函数继续执行,生成器和迭代协议是密切相关的,迭代器都有一个__next__()__成员方法,这个方法要么返回迭代的下一项,要买引起异常结束迭代。

    # 函数有了yield之后,函数名+()就变成了生成器
    # return在生成器中代表生成器的中止,直接报错
    # next的作用是唤醒并继续执行
    # send的作用是唤醒并继续执行,发送一个信息到生成器内部
    '''生成器'''
    
    def create_counter(n):
        print("create_counter")
        while True:
            yield n
            print("increment n")
            n +=1
    
    gen = create_counter(2)
    print(gen)
    print(next(gen))
    print(next(gen))
    
    结果:
    <generator object create_counter at 0x0000023A1694A938>
    create_counter
    2
    increment n
    3
    Process finished with exit code 0
    

      

    ——生成器表达式

    生成器表达式来源于迭代和列表解析的组合,生成器和列表解析类似,但是它使用尖括号而不是方括号

    >>> # 列表解析生成列表
    >>> [ x ** 3 for x in range(5)]
    [0, 1, 8, 27, 64]
    >>> 
    >>> # 生成器表达式
    >>> (x ** 3 for x in range(5))
    <generator object <genexpr> at 0x000000000315F678>
    >>> # 两者之间转换
    >>> list(x ** 3 for x in range(5))
    [0, 1, 8, 27, 64]
    

      一个迭代既可以被写成生成器函数,也可以被协程生成器表达式,均支持自动和手动迭代。而且这些生成器只支持一个active迭代,也就是说生成器的迭代器就是生成器本身。

    迭代器(迭代就是循环)

      迭代器包含有next方法的实现,在正确的范围内返回期待的数据以及超出范围后能够抛出StopIteration的错误停止迭代。

      我们已经知道,可以直接作用于for循环的数据类型有以下几种:

    一类是集合数据类型,如list,tuple,dict,set,str等

    一类是generator,包括生成器和带yield的generator function

    这些可以直接作用于for 循环的对象统称为可迭代对象:Iterable

    可以使用isinstance()判断一个对象是否为可Iterable对象

    >>> from collections import Iterable
    >>> isinstance([], Iterable)
    True
    >>> isinstance({}, Iterable)
    True
    >>> isinstance('abc', Iterable)
    True
    >>> isinstance((x for x in range(10)), Iterable)
    True
    >>> isinstance(100, Iterable)
    False
    

      而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

    所以这里讲一下迭代器

    一个实现了iter方法的对象是可迭代的,一个实现next方法并且是可迭代的对象是迭代器。

    可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。

    所以一个实现了iter方法和next方法的对象就是迭代器。

    可以使用isinstance()判断一个对象是否是Iterator对象:

    >>> from collections import Iterator
    >>> isinstance((x for x in range(10)), Iterator)
    True
    >>> isinstance([], Iterator)
    False
    >>> isinstance({}, Iterator)
    False
    >>> isinstance('abc', Iterator)
    False
    

      

    生成器都是Iterator对象,但listdictstr虽然是Iterable(可迭代对象),却不是Iterator(迭代器)

    listdictstrIterable变成Iterator可以使用iter()函数

    >>> isinstance(iter([]), Iterator)
    True
    >>> isinstance(iter('abc'), Iterator)
    True
    

      

    你可能会问,为什么listdictstr等数据类型不是Iterator

    这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

    Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

      判断下列数据类型是可迭代对象or迭代器

    s='hello'
    l=[1,2,3,4]
    t=(1,2,3)
    d={'a':1}
    set={1,2,3}
    f=open('a.txt')
    

      

    s='hello'     #字符串是可迭代对象,但不是迭代器
    l=[1,2,3,4]     #列表是可迭代对象,但不是迭代器
    t=(1,2,3)       #元组是可迭代对象,但不是迭代器
    d={'a':1}        #字典是可迭代对象,但不是迭代器
    set={1,2,3}     #集合是可迭代对象,但不是迭代器
    # *************************************
    f=open('test.txt') #文件是可迭代对象,是迭代器
    
    #如何判断是可迭代对象,只有__iter__方法,执行该方法得到的迭代器对象。
    # 及可迭代对象通过__iter__转成迭代器对象
    from collections import Iterator  #迭代器
    from collections import Iterable  #可迭代对象
    
    print(isinstance(s,Iterator))     #判断是不是迭代器
    print(isinstance(s,Iterable))       #判断是不是可迭代对象
    
    #把可迭代对象转换为迭代器
    print(isinstance(iter(s),Iterator))
    

     

     注意:文件的判断

    f = open('housing.csv')
    from collections import Iterator
    from collections import Iterable
    
    print(isinstance(f,Iterator))
    print(isinstance(f,Iterable))
    
    True
    True
    

      结论:文件是可迭代对象,也是迭代器

    小结:

    • 凡是可作用于for循环的对象都是Iterable类型;
    • 凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;
    • 集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

    Python3的for循环本质上就是通过不断调用next()函数实现的,例如:

    for x in [1, 2, 3, 4, 5]:
        pass
    

     实际上完全等价于

    # 首先获得Iterator对象:
    it = iter([1, 2, 3, 4, 5])
    # 循环:
    while True:
        try:
            # 获得下一个值:
            x = next(it)
        except StopIteration:
            # 遇到StopIteration就退出循环
            break
    

      

    对yield的总结

      (1)通常的for..in...循环中,in后面是一个数组,这个数组就是一个可迭代对象,类似的还有链表,字符串,文件。他可以是a = [1,2,3],也可以是a = [x*x for x in range(3)]。

    它的缺点也很明显,就是所有数据都在内存里面,如果有海量的数据,将会非常耗内存。

      (2)生成器是可以迭代的,但是只可以读取它一次。因为用的时候才生成,比如a = (x*x for x in range(3))。!!!!注意这里是小括号而不是方括号。

      (3)生成器(generator)能够迭代的关键是他有next()方法,工作原理就是通过重复调用next()方法,直到捕获一个异常。

      (4)带有yield的函数不再是一个普通的函数,而是一个生成器generator,可用于迭代

      (5)yield是一个类似return 的关键字,迭代一次遇到yield的时候就返回yield后面或者右面的值。而且下一次迭代的时候,从上一次迭代遇到的yield后面的代码开始执行

      (6)yield就是return返回的一个值,并且记住这个返回的位置。下一次迭代就从这个位置开始。

      (7)带有yield的函数不仅仅是只用于for循环,而且可用于某个函数的参数,只要这个函数的参数也允许迭代参数。

      (8)send()和next()的区别就在于send可传递参数给yield表达式,这时候传递的参数就会作为yield表达式的值,而yield的参数是返回给调用者的值,也就是说send可以强行修改上一个yield表达式值。

      (9)send()和next()都有返回值,他们的返回值是当前迭代遇到的yield的时候,yield后面表达式的值,其实就是当前迭代yield后面的参数。

      (10)第一次调用时候必须先next()或send(),否则会报错,send后之所以为None是因为这时候没有上一个yield,所以也可以认为next()等同于send(None)

    补充:itertools库学习

      库的官网地址:https://docs.python.org/2/library/itertools.html#itertools.permutations

      (此部分笔记参考博客:https://www.jb51.net/article/123094.htm)

      迭代器(生成器)在Python中是一种很常用也很好用的数据结构,比起列表(list)来说,迭代器最大的优势就是延迟计算,按需使用,从而提高开发体验和运行效率,以至于在Python 3中map,filter等操作返回的不再是列表而是迭代器。

      话虽这么说但大家平时用到的迭代器大概只有range了,而通过iter函数把列表对象转化为迭代器对象又有点多此一举,这时候我们今天的主角itertools就该上场了。

      itertools中的额函数大多数是返回各种迭代器对象,其中很多函数的作用我们平时要写很多代码才能达到,而在运行效率上反而更低,毕竟人家是系统库。

    1,itertools.accumulate

      简单来说就是累加。

    from itertools import accumulate
    x = accumulate(range(10)) print(list(x)) [0, 1, 3, 6, 10, 15, 21, 28, 36, 45]

      

    2,itertools.permutations

      产生指定数目元素的所有排列(顺序有关)

    from itertools import permutations
    
    x = permutations((1,2,3))
    print(list(x))
    [(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)]
    

      

  • 相关阅读:
    iaure学习网站
    linux下环境搭建比较
    微信分享jsdk接口
    微信接口开发遇到的问题
    Centos7.6部署k8s(v1.14.2)集群
    k8s简介
    nginx配置ssl证书
    kafka zookeeper介绍
    mysql数据库的备份与还原
    centos7 部署jumpserver
  • 原文地址:https://www.cnblogs.com/wj-1314/p/8490822.html
Copyright © 2011-2022 走看看