zoukankan      html  css  js  c++  java
  • 随机森林random forest及python实现

    引言
    想通过随机森林来获取数据的主要特征

    1、理论
    根据个体学习器的生成方式,目前的集成学习方法大致可分为两大类,即个体学习器之间存在强依赖关系,必须串行生成的序列化方法,以及个体学习器间不存在强依赖关系,可同时生成的并行化方法;

    前者的代表是Boosting,后者的代表是Bagging和“随机森林”(Random
    Forest)

    随机森林在以决策树为基学习器构建Bagging集成的基础上,进一步在决策树的训练过程中引入了随机属性选择(即引入随机特征选择)。

    简单来说,随机森林就是对决策树的集成,但有两点不同:

    (2)特征选取的差异性:每个决策树的n个分类特征是在所有特征中随机选择的(n是一个需要我们自己调整的参数)

    随机森林,简单理解,
    比如预测salary,就是构建多个决策树job,age,house,然后根据要预测的量的各个特征(teacher,39,suburb)分别在对应决策树的目标值概率(salary<5000,salary>=5000),从而,确定预测量的发生概率(如,预测出P(salary<5000)=0.3).

    参数说明:
    最主要的两个参数是n_estimators和max_features。
    n_estimators:表示森林里树的个数。理论上是越大越好。但是伴随着就是计算时间的增长。但是并不是取得越大就会越好,预测效果最好的将会出现在合理的树个数。
    max_features:随机选择特征集合的子集合,并用来分割节点。子集合的个数越少,方差就会减少的越快,但同时偏差就会增加的越快。根据较好的实践经验。如果是回归问题则:
    max_features=n_features,如果是分类问题则max_features=sqrt(n_features)。

    如果想获取较好的结果,必须将max_depth=None,同时min_sample_split=1。
    同时还要记得进行cross_validated(交叉验证),除此之外记得在random forest中,bootstrap=True。但在extra-trees中,bootstrap=False。

    2、随机森林python实现
    2.1随机森林回归器的使用Demo1

    实现随机森林基本功能

    #随机森林

    from sklearn.tree import DecisionTreeRegressor
    from sklearn.ensemble import RandomForestRegressor
    import numpy as np

    from sklearn.datasets import load_iris
    iris=load_iris()
    #print iris#iris的4个属性是:萼片宽度 萼片长度 花瓣宽度 花瓣长度 标签是花的种类:setosa versicolour virginica
    print(iris['target'].shape)
    rf=RandomForestRegressor()#这里使用了默认的参数设置
    rf.fit(iris.data[:150],iris.target[:150])#进行模型的训练
    #

    #随机挑选两个预测不相同的样本
    instance=iris.data[[100,109]]
    print(instance)
    rf.predict(instance[[0]])
    print('instance 0 prediction;',rf.predict(instance[[0]]))
    print( 'instance 1 prediction;',rf.predict(instance[[1]]))
    print(iris.target[100],iris.target[109])

    运行结果

    (150,)
    [[ 6.3 3.3 6. 2.5]
    [ 7.2 3.6 6.1 2.5]]
    instance 0 prediction; [ 2.]
    instance 1 prediction; [ 2.]
    2 2

    2.2 随机森林分类器、决策树、extra树分类器的比较Demo2
    3种方法的比较

    #random forest test

    from sklearn.model_selection import cross_val_score
    from sklearn.datasets import make_blobs
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.ensemble import ExtraTreesClassifier
    from sklearn.tree import DecisionTreeClassifier

    X, y = make_blobs(n_samples=10000, n_features=10, centers=100,random_state=0)

    clf = DecisionTreeClassifier(max_depth=None, min_samples_split=2,random_state=0)
    scores = cross_val_score(clf, X, y)
    print(scores.mean())


    clf = RandomForestClassifier(n_estimators=10, max_depth=None,min_samples_split=2, random_state=0)
    scores = cross_val_score(clf, X, y)
    print(scores.mean())

    clf = ExtraTreesClassifier(n_estimators=10, max_depth=None,min_samples_split=2, random_state=0)
    scores = cross_val_score(clf, X, y)
    print(scores.mean())

    运行结果:

    0.979408793821
    0.999607843137
    0.999898989899
    1
    2
    3
    2.3 随机森林回归器regressor-实现特征选择

    #随机森林2

    from sklearn.tree import DecisionTreeRegressor
    from sklearn.ensemble import RandomForestRegressor
    import numpy as np

    from sklearn.datasets import load_iris
    iris=load_iris()

    from sklearn.model_selection import cross_val_score, ShuffleSplit
    X = iris["data"]
    Y = iris["target"]
    names = iris["feature_names"]

    rf = RandomForestRegressor()
    scores = []
    for i in range(X.shape[1]):
    score = cross_val_score(rf, X[:, i:i+1], Y, scoring="r2",
    cv=ShuffleSplit(len(X), 3, .3))
    scores.append((round(np.mean(score), 3), names[i]))

    print(sorted(scores, reverse=True))

    运行结果:

    [(0.89300000000000002, 'petal width (cm)'), (0.82099999999999995, 'petal length
    (cm)'), (0.13, 'sepal length (cm)'), (-0.79100000000000004, 'sepal width (cm)')]
    1
    2
    2.4 demo4-随机森林
    本来想利用以下代码来构建随机随机森林决策树,但是,遇到的问题是,程序一直在运行,无法响应,还需要调试。

    #随机森林4

    #coding:utf-8
    import csv
    from random import seed
    from random import randrange
    from math import sqrt

    def loadCSV(filename):#加载数据,一行行的存入列表
    dataSet = []
    with open(filename, 'r') as file:
    csvReader = csv.reader(file)
    for line in csvReader:
    dataSet.append(line)
    return dataSet

    # 除了标签列,其他列都转换为float类型
    def column_to_float(dataSet):
    featLen = len(dataSet[0]) - 1
    for data in dataSet:
    for column in range(featLen):
    data[column] = float(data[column].strip())

    # 将数据集随机分成N块,方便交叉验证,其中一块是测试集,其他四块是训练集
    def spiltDataSet(dataSet, n_folds):
    fold_size = int(len(dataSet) / n_folds)
    dataSet_copy = list(dataSet)
    dataSet_spilt = []
    for i in range(n_folds):
    fold = []
    while len(fold) < fold_size: # 这里不能用if,if只是在第一次判断时起作用,while执行循环,直到条件不成立
    index = randrange(len(dataSet_copy))
    fold.append(dataSet_copy.pop(index)) # pop() 函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值。
    dataSet_spilt.append(fold)
    return dataSet_spilt

    # 构造数据子集
    def get_subsample(dataSet, ratio):
    subdataSet = []
    lenSubdata = round(len(dataSet) * ratio)#返回浮点数
    while len(subdataSet) < lenSubdata:
    index = randrange(len(dataSet) - 1)
    subdataSet.append(dataSet[index])
    # print len(subdataSet)
    return subdataSet

    # 分割数据集
    def data_spilt(dataSet, index, value):
    left = []
    right = []
    for row in dataSet:
    if row[index] < value:
    left.append(row)
    else:
    right.append(row)
    return left, right

    # 计算分割代价
    def spilt_loss(left, right, class_values):
    loss = 0.0
    for class_value in class_values:
    left_size = len(left)
    if left_size != 0: # 防止除数为零
    prop = [row[-1] for row in left].count(class_value) / float(left_size)
    loss += (prop * (1.0 - prop))
    right_size = len(right)
    if right_size != 0:
    prop = [row[-1] for row in right].count(class_value) / float(right_size)
    loss += (prop * (1.0 - prop))
    return loss

    # 选取任意的n个特征,在这n个特征中,选取分割时的最优特征
    def get_best_spilt(dataSet, n_features):
    features = []
    class_values = list(set(row[-1] for row in dataSet))
    b_index, b_value, b_loss, b_left, b_right = 999, 999, 999, None, None
    while len(features) < n_features:
    index = randrange(len(dataSet[0]) - 1)
    if index not in features:
    features.append(index)
    # print 'features:',features
    for index in features:#找到列的最适合做节点的索引,(损失最小)
    for row in dataSet:
    left, right = data_spilt(dataSet, index, row[index])#以它为节点的,左右分支
    loss = spilt_loss(left, right, class_values)
    if loss < b_loss:#寻找最小分割代价
    b_index, b_value, b_loss, b_left, b_right = index, row[index], loss, left, right
    # print b_loss
    # print type(b_index)
    return {'index': b_index, 'value': b_value, 'left': b_left, 'right': b_right}

    # 决定输出标签
    def decide_label(data):
    output = [row[-1] for row in data]
    return max(set(output), key=output.count)


    # 子分割,不断地构建叶节点的过程对对对
    def sub_spilt(root, n_features, max_depth, min_size, depth):
    left = root['left']
    # print left
    right = root['right']
    del (root['left'])
    del (root['right'])
    # print depth
    if not left or not right:
    root['left'] = root['right'] = decide_label(left + right)
    # print 'testing'
    return
    if depth > max_depth:
    root['left'] = decide_label(left)
    root['right'] = decide_label(right)
    return
    if len(left) < min_size:
    root['left'] = decide_label(left)
    else:
    root['left'] = get_best_spilt(left, n_features)
    # print 'testing_left'
    sub_spilt(root['left'], n_features, max_depth, min_size, depth + 1)
    if len(right) < min_size:
    root['right'] = decide_label(right)
    else:
    root['right'] = get_best_spilt(right, n_features)
    # print 'testing_right'
    sub_spilt(root['right'], n_features, max_depth, min_size, depth + 1)

    # 构造决策树
    def build_tree(dataSet, n_features, max_depth, min_size):
    root = get_best_spilt(dataSet, n_features)
    sub_spilt(root, n_features, max_depth, min_size, 1)
    return root
    # 预测测试集结果
    def predict(tree, row):
    predictions = []
    if row[tree['index']] < tree['value']:
    if isinstance(tree['left'], dict):
    return predict(tree['left'], row)
    else:
    return tree['left']
    else:
    if isinstance(tree['right'], dict):
    return predict(tree['right'], row)
    else:
    return tree['right']
    # predictions=set(predictions)
    def bagging_predict(trees, row):
    predictions = [predict(tree, row) for tree in trees]
    return max(set(predictions), key=predictions.count)
    # 创建随机森林
    def random_forest(train, test, ratio, n_feature, max_depth, min_size, n_trees):
    trees = []
    for i in range(n_trees):
    train = get_subsample(train, ratio)#从切割的数据集中选取子集
    tree = build_tree(train, n_features, max_depth, min_size)
    # print 'tree %d: '%i,tree
    trees.append(tree)
    # predict_values = [predict(trees,row) for row in test]
    predict_values = [bagging_predict(trees, row) for row in test]
    return predict_values
    # 计算准确率
    def accuracy(predict_values, actual):
    correct = 0
    for i in range(len(actual)):
    if actual[i] == predict_values[i]:
    correct += 1
    return correct / float(len(actual))


    if __name__ == '__main__':
    seed(1)
    dataSet = loadCSV(r'G:研究生 ianchiCompetition训练小样本2.csv')
    column_to_float(dataSet)
    n_folds = 5
    max_depth = 15
    min_size = 1
    ratio = 1.0
    # n_features=sqrt(len(dataSet)-1)
    n_features = 15
    n_trees = 10
    folds = spiltDataSet(dataSet, n_folds)#先是切割数据集
    scores = []
    for fold in folds:
    train_set = folds[
    :] # 此处不能简单地用train_set=folds,这样用属于引用,那么当train_set的值改变的时候,folds的值也会改变,所以要用复制的形式。(L[:])能够复制序列,D.copy() 能够复制字典,list能够生成拷贝 list(L)
    train_set.remove(fold)#选好训练集
    # print len(folds)
    train_set = sum(train_set, []) # 将多个fold列表组合成一个train_set列表
    # print len(train_set)
    test_set = []
    for row in fold:
    row_copy = list(row)
    row_copy[-1] = None
    test_set.append(row_copy)
    # for row in test_set:
    # print row[-1]
    actual = [row[-1] for row in fold]
    predict_values = random_forest(train_set, test_set, ratio, n_features, max_depth, min_size, n_trees)
    accur = accuracy(predict_values, actual)
    scores.append(accur)
    print ('Trees is %d' % n_trees)
    print ('scores:%s' % scores)
    print ('mean score:%s' % (sum(scores) / float(len(scores))))

    2.5 随机森林分类sonic data

    # CART on the Bank Note dataset
    from random import seed
    from random import randrange
    from csv import reader

    # Load a CSV file
    def load_csv(filename):
    file = open(filename, "r")
    lines = reader(file)
    dataset = list(lines)
    return dataset

    # Convert string column to float
    def str_column_to_float(dataset, column):
    for row in dataset:
    row[column] = float(row[column].strip())

    # Split a dataset into k folds
    def cross_validation_split(dataset, n_folds):
    dataset_split = list()
    dataset_copy = list(dataset)
    fold_size = int(len(dataset) / n_folds)
    for i in range(n_folds):
    fold = list()
    while len(fold) < fold_size:
    index = randrange(len(dataset_copy))
    fold.append(dataset_copy.pop(index))
    dataset_split.append(fold)
    return dataset_split

    # Calculate accuracy percentage
    def accuracy_metric(actual, predicted):
    correct = 0
    for i in range(len(actual)):
    if actual[i] == predicted[i]:
    correct += 1
    return correct / float(len(actual)) * 100.0

    # Evaluate an algorithm using a cross validation split
    def evaluate_algorithm(dataset, algorithm, n_folds, *args):
    folds = cross_validation_split(dataset, n_folds)
    scores = list()
    for fold in folds:
    train_set = list(folds)
    train_set.remove(fold)
    train_set = sum(train_set, [])
    test_set = list()
    for row in fold:
    row_copy = list(row)
    test_set.append(row_copy)
    row_copy[-1] = None
    predicted = algorithm(train_set, test_set, *args)
    actual = [row[-1] for row in fold]
    accuracy = accuracy_metric(actual, predicted)
    scores.append(accuracy)
    return scores

    # Split a data set based on an attribute and an attribute value
    def test_split(index, value, dataset):
    left, right = list(), list()
    for row in dataset:
    if row[index] < value:
    left.append(row)
    else:
    right.append(row)
    return left, right

    # Calculate the Gini index for a split dataset
    def gini_index(groups, class_values):
    gini = 0.0
    for class_value in class_values:
    for group in groups:
    size = len(group)
    if size == 0:
    continue
    proportion = [row[-1] for row in group].count(class_value) / float(size)
    gini += (proportion * (1.0 - proportion))
    return gini

    # Select the best split point for a dataset
    def get_split(dataset):
    class_values = list(set(row[-1] for row in dataset))
    b_index, b_value, b_score, b_groups = 999, 999, 999, None
    for index in range(len(dataset[0])-1):
    for row in dataset:
    groups = test_split(index, row[index], dataset)
    gini = gini_index(groups, class_values)
    if gini < b_score:
    b_index, b_value, b_score, b_groups = index, row[index], gini, groups
    print ({'index':b_index, 'value':b_value})
    return {'index':b_index, 'value':b_value, 'groups':b_groups}

    # Create a terminal node value
    def to_terminal(group):
    outcomes = [row[-1] for row in group]
    return max(set(outcomes), key=outcomes.count)

    # Create child splits for a node or make terminal
    def split(node, max_depth, min_size, depth):
    left, right = node['groups']
    del(node['groups'])
    # check for a no split
    if not left or not right:
    node['left'] = node['right'] = to_terminal(left + right)
    return
    # check for max depth
    if depth >= max_depth:
    node['left'], node['right'] = to_terminal(left), to_terminal(right)
    return
    # process left child
    if len(left) <= min_size:
    node['left'] = to_terminal(left)
    else:
    node['left'] = get_split(left)
    split(node['left'], max_depth, min_size, depth+1)
    # process right child
    if len(right) <= min_size:
    node['right'] = to_terminal(right)
    else:
    node['right'] = get_split(right)
    split(node['right'], max_depth, min_size, depth+1)

    # Build a decision tree
    def build_tree(train, max_depth, min_size):
    root = get_split(train)
    split(root, max_depth, min_size, 1)
    return root

    # Make a prediction with a decision tree
    def predict(node, row):
    if row[node['index']] < node['value']:
    if isinstance(node['left'], dict):
    return predict(node['left'], row)
    else:
    return node['left']
    else:
    if isinstance(node['right'], dict):
    return predict(node['right'], row)
    else:
    return node['right']

    # Classification and Regression Tree Algorithm
    def decision_tree(train, test, max_depth, min_size):
    tree = build_tree(train, max_depth, min_size)
    predictions = list()
    for row in test:
    prediction = predict(tree, row)
    predictions.append(prediction)
    return(predictions)

    # Test CART on Bank Note dataset
    seed(1)
    # load and prepare data
    filename = r'G:pythonstudy决策树sonar.all-data.csv'
    dataset = load_csv(filename)
    # convert string attributes to integers
    for i in range(len(dataset[0])-1):
    str_column_to_float(dataset, i)
    # evaluate algorithm
    n_folds = 5
    max_depth = 5
    min_size = 10
    scores = evaluate_algorithm(dataset, decision_tree, n_folds, max_depth, min_size)
    print('Scores: %s' % scores)
    print('Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores))))

    运行结果:

    {'index': 38, 'value': 0.0894}
    {'index': 36, 'value': 0.8459}
    {'index': 50, 'value': 0.0024}
    {'index': 15, 'value': 0.0906}
    {'index': 16, 'value': 0.9819}
    {'index': 10, 'value': 0.0785}
    {'index': 16, 'value': 0.0886}
    {'index': 38, 'value': 0.0621}
    {'index': 5, 'value': 0.0226}
    {'index': 8, 'value': 0.0368}
    {'index': 11, 'value': 0.0754}
    {'index': 0, 'value': 0.0239}
    {'index': 8, 'value': 0.0368}
    {'index': 29, 'value': 0.1671}
    {'index': 46, 'value': 0.0237}
    {'index': 38, 'value': 0.0621}
    {'index': 14, 'value': 0.0668}
    {'index': 4, 'value': 0.0167}
    {'index': 37, 'value': 0.0836}
    {'index': 12, 'value': 0.0616}
    {'index': 7, 'value': 0.0333}
    {'index': 33, 'value': 0.8741}
    {'index': 16, 'value': 0.0886}
    {'index': 8, 'value': 0.0368}
    {'index': 33, 'value': 0.0798}
    {'index': 44, 'value': 0.0298}
    Scores: [48.78048780487805, 70.73170731707317, 58.536585365853654, 51.2195121951
    2195, 39.02439024390244]
    Mean Accuracy: 53.659%

    请按任意键继续. . .

    知识点:
    1.load CSV file

    from csv import reader

    # Load a CSV file
    def load_csv(filename):
    file = open(filename, "r")
    lines = reader(file)
    dataset = list(lines)
    return dataset

    filename = r'G:pythonstudy决策树sonar.all-data.csv'
    dataset=load_csv(filename)
    print(dataset)

    2.把数据转化成float格式

    # Convert string column to float
    def str_column_to_float(dataset, column):
    for row in dataset:
    row[column] = float(row[column].strip())
    # print(row[column])

    # convert string attributes to integers
    for i in range(len(dataset[0])-1):
    str_column_to_float(dataset, i)

    3.把最后一列的分类字符串转化成0、1整数

    def str_column_to_int(dataset, column):
    class_values = [row[column] for row in dataset]#生成一个class label的list
    # print(class_values)
    unique = set(class_values)#set 获得list的不同元素
    print(unique)

    lookup = dict()#定义一个字典
    # print(enumerate(unique))
    for i, value in enumerate(unique):
    lookup[value] = i
    # print(lookup)
    for row in dataset:
    row[column] = lookup[row[column]]
    print(lookup['M'])

    4、把数据集分割成K份

    # Split a dataset into k folds
    def cross_validation_split(dataset, n_folds):
    dataset_split = list()#生成空列表

    dataset_copy = list(dataset)
    print(len(dataset_copy))
    print(len(dataset))
    #print(dataset_copy)
    fold_size = int(len(dataset) / n_folds)
    for i in range(n_folds):
    fold = list()
    while len(fold) < fold_size:
    index = randrange(len(dataset_copy))
    # print(index)
    fold.append(dataset_copy.pop(index))#使用.pop()把里边的元素都删除(相当于转移),这k份元素各不相同。
    dataset_split.append(fold)
    return dataset_split

    n_folds=5
    folds = cross_validation_split(dataset, n_folds)#k份元素各不相同的训练集

    5.计算正确率

    # Calculate accuracy percentage
    def accuracy_metric(actual, predicted):
    correct = 0
    for i in range(len(actual)):
    if actual[i] == predicted[i]:
    correct += 1
    return correct / float(len(actual)) * 100.0#这个是二值分类正确性的表达式

    6.二分类每列

    # Split a data set based on an attribute and an attribute value
    def test_split(index, value, dataset):
    left, right = list(), list()#初始化两个空列表
    for row in dataset:
    if row[index] < value:
    left.append(row)
    else:
    right.append(row)
    return left, right #返回两个列表,每个列表以value为界限对指定行(index)进行二分类。

    7.使用gini系数来获得最佳分割点

    # Calculate the Gini index for a split dataset
    def gini_index(groups, class_values):
    gini = 0.0
    for class_value in class_values:
    for group in groups:
    size = len(group)
    if size == 0:
    continue
    proportion = [row[-1] for row in group].count(class_value) / float(size)
    gini += (proportion * (1.0 - proportion))
    return gini

    # Select the best split point for a dataset
    def get_split(dataset):
    class_values = list(set(row[-1] for row in dataset))
    b_index, b_value, b_score, b_groups = 999, 999, 999, None
    for index in range(len(dataset[0])-1):
    for row in dataset:
    groups = test_split(index, row[index], dataset)
    gini = gini_index(groups, class_values)
    if gini < b_score:
    b_index, b_value, b_score, b_groups = index, row[index], gini, groups
    # print(groups)
    print ({'index':b_index, 'value':b_value,'score':gini})
    return {'index':b_index, 'value':b_value, 'groups':b_groups}

    这段代码,在求gini指数,直接应用定义式,不难理解。获得最佳分割点可能比较难看懂,这里用了两层迭代,一层是对不同列的迭代,一层是对不同行的迭代。并且,每次迭代,都对gini系数进行更新。

    8、决策树生成

    # Create child splits for a node or make terminal
    def split(node, max_depth, min_size, depth):
    left, right = node['groups']
    del(node['groups'])
    # check for a no split
    if not left or not right:
    node['left'] = node['right'] = to_terminal(left + right)
    return
    # check for max depth
    if depth >= max_depth:
    node['left'], node['right'] = to_terminal(left), to_terminal(right)
    return
    # process left child
    if len(left) <= min_size:
    node['left'] = to_terminal(left)
    else:
    node['left'] = get_split(left)
    split(node['left'], max_depth, min_size, depth+1)
    # process right child
    if len(right) <= min_size:
    node['right'] = to_terminal(right)
    else:
    node['right'] = get_split(right)
    split(node['right'], max_depth, min_size, depth+1)

    这里使用了递归编程,不断生成左叉树和右叉树。

    9.构建决策树

    # Build a decision tree
    def build_tree(train, max_depth, min_size):
    root = get_split(train)
    split(root, max_depth, min_size, 1)
    return root

    tree=build_tree(train_set, max_depth, min_size)
    print(tree)

    10、预测test集

    # Build a decision tree
    def build_tree(train, max_depth, min_size):
    root = get_split(train)#获得最好的分割点,下标值,groups
    split(root, max_depth, min_size, 1)
    return root

    # tree=build_tree(train_set, max_depth, min_size)
    # print(tree)

    # Make a prediction with a decision tree
    def predict(node, row):
    print(row[node['index']])
    print(node['value'])
    if row[node['index']] < node['value']:#用测试集来代入训练的最好分割点,分割点有偏差时,通过搜索左右叉树来进一步比较。
    if isinstance(node['left'], dict):#如果是字典类型,执行操作
    return predict(node['left'], row)
    else:
    return node['left']
    else:
    if isinstance(node['right'], dict):
    return predict(node['right'], row)
    else:
    return node['right']

    tree = build_tree(train_set, max_depth, min_size)
    predictions = list()
    for row in test_set:
    prediction = predict(tree, row)
    predictions.append(prediction)

    11.评价决策树

    # Evaluate an algorithm using a cross validation split
    def evaluate_algorithm(dataset, algorithm, n_folds, *args):
    folds = cross_validation_split(dataset, n_folds)
    scores = list()
    for fold in folds:
    train_set = list(folds)
    train_set.remove(fold)
    train_set = sum(train_set, [])
    test_set = list()
    for row in fold:
    row_copy = list(row)
    test_set.append(row_copy)
    row_copy[-1] = None
    predicted = algorithm(train_set, test_set, *args)
    actual = [row[-1] for row in fold]
    accuracy = accuracy_metric(actual, predicted)
    scores.append(accuracy)
    return scores

    参考:

    随机森林;
    python实现随机森林;
    sklearn随机森林实现;
    tuning random forest’s parameters;
    随机森林python;
    随机森林声纳数据仿真;
    GitHub决策树;
    kaggle random forest

  • 相关阅读:
    WordPress搭建的新博客 www.douzujun.club
    调用weka模拟实现 “主动学习“ 算法
    危险!80% 用户正在考虑放弃 Oracle JDK…
    最新!Dubbo 远程代码执行漏洞通告,速度升级
    Tomcat 又爆出高危漏洞!!Tomcat 8.5 ~10 中招…
    Spring Boot 启动,1 秒搞定!
    为什么要重写 hashcode 和 equals 方法?
    详解 Java 中 4 种 IO 模型
    详解GaussDB bufferpool缓存策略,这次彻底懂了!
    【API进阶之路6】一个技术盲点,差点让整个项目翻车
  • 原文地址:https://www.cnblogs.com/tan2810/p/10594710.html
Copyright © 2011-2022 走看看