zoukankan      html  css  js  c++  java
  • 如何简单使用tensorboard展示(二)

    我使用tensorboard继续做了标量展示与直方图展示,在一的基础做了拓展,其改写代码如下:

    import numpy as np
    import tensorflow as tf
    import random


    # x_img = np.array(np.ones((5,784)))
    y_lable = np.array(np.zeros((5,10)))
    for i in range(5):
    y_lable[i,2+i]=1


    with tf.name_scope('input'):
    x = tf.placeholder(shape=[None,784],dtype=tf.float32,name='xinput')
    y_ = tf.placeholder( shape=[None,10],dtype=tf.float32,name='yinput')
    with tf.name_scope('weight'):
    W = tf.Variable(tf.zeros([784,10]),dtype=tf.float32)
    tf.summary.histogram('w',W)
    b = tf.Variable(tf.zeros([10]),tf.float32)
    y = tf.nn.softmax(tf.matmul(x,W) + b)
    with tf.name_scope('cross_ent'):
    cross_entropy = -tf.reduce_sum(y_*tf.log(y)) #损失函数
    tf.summary.scalar('cross_en',cross_entropy)
    train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) #优化器

    #定义测试的准确率 #ragmaax()0表示按列,1表示按行,输出该列或行的最大值的下标值;equal()表示相等返回值为True或False
    correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1)) #执行测试样本的准确率(全部的样本),计算相等值,为bool值,则为1和0
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) #将全部的bool型转换为float32类型,在求平均值
    tf.summary.scalar('accuracy',accuracy)

    merged=tf.summary.merge_all() # 该步骤很关键
    sess=tf.Session()
    writer=tf.summary.FileWriter('C:\Users\51102\Desktop\savetensorboard',sess.graph) # 此步骤较为关键,特别是放置位置
    sess.run(tf.global_variables_initializer())

    for k in range(20): # 迭代20次
    xx = np.zeros((5, 784)) # 下面是自己编造输入数据
    for i in range(5):
    for j in range(784):
    xx[i, j] = random.randint(0, 254)
    x_img=xx
    su,ac=sess.run([merged,accuracy],feed_dict={x:x_img,y_:y_lable}) # 主要用了merged
    writer.add_summary(su, k) # 此步骤将其写入文件中








    结果显示如下图:

     

  • 相关阅读:
    李白—烂尾楼题记
    [原创]网络图片延迟加载实现,超越jquery2010年3月26日
    利用反射,泛型,扩展方法快速获取表单值到实体类
    断点续传 到底是很么
    认识LINQ
    Gridview控件用法大总结
    网站性能优化总结。
    JQ小技巧
    自己写的jq_3个小插件
    MOSS中SPuser类的使用
  • 原文地址:https://www.cnblogs.com/tangjunjun/p/11809464.html
Copyright © 2011-2022 走看看