zoukankan      html  css  js  c++  java
  • 如何简单使用tensorboard展示(二)

    我使用tensorboard继续做了标量展示与直方图展示,在一的基础做了拓展,其改写代码如下:

    import numpy as np
    import tensorflow as tf
    import random


    # x_img = np.array(np.ones((5,784)))
    y_lable = np.array(np.zeros((5,10)))
    for i in range(5):
    y_lable[i,2+i]=1


    with tf.name_scope('input'):
    x = tf.placeholder(shape=[None,784],dtype=tf.float32,name='xinput')
    y_ = tf.placeholder( shape=[None,10],dtype=tf.float32,name='yinput')
    with tf.name_scope('weight'):
    W = tf.Variable(tf.zeros([784,10]),dtype=tf.float32)
    tf.summary.histogram('w',W)
    b = tf.Variable(tf.zeros([10]),tf.float32)
    y = tf.nn.softmax(tf.matmul(x,W) + b)
    with tf.name_scope('cross_ent'):
    cross_entropy = -tf.reduce_sum(y_*tf.log(y)) #损失函数
    tf.summary.scalar('cross_en',cross_entropy)
    train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) #优化器

    #定义测试的准确率 #ragmaax()0表示按列,1表示按行,输出该列或行的最大值的下标值;equal()表示相等返回值为True或False
    correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1)) #执行测试样本的准确率(全部的样本),计算相等值,为bool值,则为1和0
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) #将全部的bool型转换为float32类型,在求平均值
    tf.summary.scalar('accuracy',accuracy)

    merged=tf.summary.merge_all() # 该步骤很关键
    sess=tf.Session()
    writer=tf.summary.FileWriter('C:\Users\51102\Desktop\savetensorboard',sess.graph) # 此步骤较为关键,特别是放置位置
    sess.run(tf.global_variables_initializer())

    for k in range(20): # 迭代20次
    xx = np.zeros((5, 784)) # 下面是自己编造输入数据
    for i in range(5):
    for j in range(784):
    xx[i, j] = random.randint(0, 254)
    x_img=xx
    su,ac=sess.run([merged,accuracy],feed_dict={x:x_img,y_:y_lable}) # 主要用了merged
    writer.add_summary(su, k) # 此步骤将其写入文件中








    结果显示如下图:

     

  • 相关阅读:
    开博语
    ch8 固定宽度、流式、弹性布局
    ch8 让div居中--使用外边距
    ch8 基于浮动的布局(两列浮动布局、三列浮动布局)
    ch3 盒模型、定位
    事件类型--鼠标与滚轮事件
    事件类型-UI事件、焦点事件
    事件对象
    事件处理程序
    内存和性能--事件委托、移除事件处理程序
  • 原文地址:https://www.cnblogs.com/tangjunjun/p/11809464.html
Copyright © 2011-2022 走看看