1、dict key 不存在的情况
要避免key不存在的错误,有两种办法,一是通过in
判断key是否存在:
>>> 'Thomas' in d False
二是通过dict提供的get()
方法,如果key不存在,可以返回None
,或者自己指定的value:
>>> d.get('Thomas') >>> d.get('Thomas', -1) -1
注意:返回None
的时候Python的交互环境不显示结果。
要删除一个key,用pop(key)
方法,对应的value也会从dict中删除:
>>> d.pop('Bob') 75 >>> d {'Michael': 95, 'Tracy': 85}
set
set和dict类似,也是一组key的集合,但不存储value。由于key不能重复,所以,在set中,没有重复的key。
要创建一个set,需要提供一个list作为输入集合:
>>> s = set([1, 2, 3]) >>> s {1, 2, 3}
注意,传入的参数[1, 2, 3]
是一个list,而显示的{1, 2, 3}
只是告诉你这个set内部有1,2,3这3个元素,显示的顺序也不表示set是有序的。。
重复元素在set中自动被过滤:
>>> s = set([1, 1, 2, 2, 3, 3]) >>> s {1, 2, 3}
通过add(key)
方法可以添加元素到set中,可以重复添加,但不会有效果:
>>> s.add(4) >>> s {1, 2, 3, 4} >>> s.add(4) >>> s {1, 2, 3, 4}
通过remove(key)
方法可以删除元素:
>>> s.remove(4) >>> s {1, 2, 3}
set可以看成数学意义上的无序和无重复元素的集合,因此,两个set可以做数学意义上的交集、并集等操作:
>>> s1 = set([1, 2, 3]) >>> s2 = set([2, 3, 4]) >>> s1 & s2 {2, 3} >>> s1 | s2 {1, 2, 3, 4}
set和dict的唯一区别仅在于没有存储对应的value,但是,set的原理和dict一样,所以,同样不可以放入可变对象,因为无法判断两个可变对象是否相等,也就无法保证set内部“不会有重复元素”。试试把list放入set,看看是否会报错。
再议不可变对象
上面我们讲了,str是不变对象,而list是可变对象。
2、函数
求绝对值的函数abs
>>> abs(-20) 20
定义函数时,需要确定函数名和参数个数;
如果有必要,可以先对参数的数据类型做检查;
if not isinstance(x, (int, float)):
raise TypeError('bad operand type')
而max
函数max()
可以接收任意多个参数,并返回最大的那个:
>>> max(1, 2) 2
Python内置的hex()
函数把一个整数转换成十六进制表示的字符串
return None
可以简写为return
。
返回多个值
原来返回值是一个tuple()!但是,在语法上,返回一个tuple可以省略括号,而多个变量可以同时接收一个tuple,按位置赋给对应的值,所以,Python的函数返回多值其实就是返回一个tuple,但写起来更方便。
计算平方根可以调用math.sqrt()
函数
默认参数可以简化函数的调用。设置默认参数时,有几点要注意:
一是必选参数在前,默认参数在后,否则Python的解释器会报错(思考一下为什么默认参数不能放在必选参数前面);
二是如何设置默认参数。
当函数有多个参数时,把变化大的参数放前面,变化小的参数放后面。变化小的参数就可以作为默认参数。
使用默认参数有什么好处?最大的好处是能降低调用函数的难度。
当不按顺序提供部分默认参数时,需要把参数名写上
默认参数很有用,但使用不当,也会掉坑里。默认参数有个最大的坑,演示如下:
先定义一个函数,传入一个list,添加一个END
再返回:
def add_end(L=[]): L.append('END') return L
当你正常调用时,结果似乎不错:
>>> add_end([1, 2, 3]) [1, 2, 3, 'END'] >>> add_end(['x', 'y', 'z']) ['x', 'y', 'z', 'END']
当你使用默认参数调用时,一开始结果也是对的:
>>> add_end() ['END']
但是,再次调用add_end()
时,结果就不对了:
>>> add_end() ['END', 'END'] >>> add_end() ['END', 'END', 'END']
很多初学者很疑惑,默认参数是[]
,但是函数似乎每次都“记住了”上次添加了'END'
后的list。
原因解释如下:
Python函数在定义的时候,默认参数L
的值就被计算出来了,即[]
,因为默认参数L
也是一个变量,它指向对象[]
,每次调用该函数,如果改变了L
的内容,则下次调用时,默认参数的内容就变了,不再是函数定义时的[]
了。
定义默认参数要牢记一点:默认参数必须指向不变对象!
要修改上面的例子,我们可以用None
这个不变对象来实现:
def add_end(L=None): if L is None: L = [] L.append('END') return L
现在,无论调用多少次,都不会有问题:
>>> add_end() ['END'] >>> add_end() ['END']
为什么要设计str
、None
这样的不变对象呢?因为不变对象一旦创建,对象内部的数据就不能修改,这样就减少了由于修改数据导致的错误。此外,由于对象不变,多任务环境下同时读取对象不需要加锁,同时读一点问题都没有。我们在编写程序时,如果可以设计一个不变对象,那就尽量设计成不变对象。
把函数的参数改为可变参数:
def calc(*numbers): sum = 0 for n in numbers: sum = sum + n * n return sum
定义可变参数和定义一个list或tuple参数相比,仅仅在参数前面加了一个*
号。在函数内部,参数numbers
接收到的是一个tuple,因此,函数代码完全不变。但是,调用该函数时,可以传入任意个参数,包括0个参数:
>>> calc(1, 2) 5 >>> calc() 0
如果已经有一个list或者tuple,要调用一个可变参数怎么办?可以这样做:
>>> nums = [1, 2, 3] >>> calc(nums[0], nums[1], nums[2]) 14
这种写法当然是可行的,问题是太繁琐,所以Python允许你在list或tuple前面加一个*
号,把list或tuple的元素变成可变参数传进去:
>>> nums = [1, 2, 3] >>> calc(*nums) 14
*nums
表示把nums
这个list的所有元素作为可变参数传进去。这种写法相当有用,而且很常见。
命名关键字参数
对于关键字参数,函数的调用者可以传入任意不受限制的关键字参数。至于到底传入了哪些,就需要在函数内部通过kw
检查。
仍以person()
函数为例,我们希望检查是否有city
和job
参数:
def person(name, age, **kw): if 'city' in kw: # 有city参数 pass if 'job' in kw: # 有job参数 pass print('name:', name, 'age:', age, 'other:', kw)
但是调用者仍可以传入不受限制的关键字参数:
>>> person('Jack', 24, city='Beijing', addr='Chaoyang', zipcode=123456)
如果要限制关键字参数的名字,就可以用命名关键字参数,例如,只接收city
和job
作为关键字参数。这种方式定义的函数如下:
def person(name, age, *, city, job): print(name, age, city, job)
和关键字参数**kw
不同,命名关键字参数需要一个特殊分隔符*
,*
后面的参数被视为命名关键字参数。
调用方式如下:
>>> person('Jack', 24, city='Beijing', job='Engineer') Jack 24 Beijing Engineer
使用命名关键字参数时,要特别注意,如果没有可变参数,就必须加一个*
作为特殊分隔符。如果缺少*
,Python解释器将无法识别位置参数和命名关键字参数:
def person(name, age, city, job): # 缺少 *,city和job被视为位置参数 pass
对于任意函数,都可以通过类似func(*args, **kw)
的形式调用它,无论它的参数是如何定义的。
3、迭代器:::
可以使用isinstance()
判断一个对象是否是Iterator
对象:
>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False
生成器都是Iterator
对象,但list
、dict
、str
虽然是Iterable
,却不是Iterator
。
把list
、dict
、str
等Iterable
变成Iterator
可以使用iter()
函数:
>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True
你可能会问,为什么list
、dict
、str
等数据类型不是Iterator
?
这是因为Python的Iterator
对象表示的是一个数据流,Iterator对象可以被next()
函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration
错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()
函数实现按需计算下一个数据,所以Iterator
的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator
甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。
小结
凡是可作用于for
循环的对象都是Iterable
类型;
凡是可作用于next()
函数的对象都是Iterator
类型,它们表示一个惰性计算的序列;
集合数据类型如list
、dict
、str
等是Iterable
但不是Iterator
,不过可以通过iter()
函数获得一个Iterator
对象。
Python的for
循环本质上就是通过不断调用next()
函数实现的
4、高阶函数
map()
把这个list所有数字转为字符串:
>>> list(map(str, [1, 2, 3, 4, 5, 6, 7, 8, 9]))
['1', '2', '3', '4', '5', '6', '7', '8', '9']
reduce()
就可以用reduce
实现:
>>> from functools import reduce
>>> def add(x, y):
... return x + y
...
>>> reduce(add, [1, 3, 5, 7, 9])
25
整理成一个str2int
的函数就是:
from functools import reduce
DIGITS = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}
def str2int(s):
def fn(x, y):
return x * 10 + y
def char2num(s):
return DIGITS[s]
return reduce(fn, map(char2num, s))
还可以用lambda函数进一步简化成:
from functools import reduce
DIGITS = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}
def char2num(s):
return DIGITS[s]
def str2int(s):
return reduce(lambda x, y: x * 10 + y, map(char2num, s))
也就是说,假设Python没有提供int()
函数,你完全可以自己写一个把字符串转化为整数的函数,而且只需要几行代码!
和map()
类似,filter()
也接收一个函数和一个序列。和map()
不同的是,filter()
把传入的函数依次作用于每个元素,然后根据返回值是True
还是False
决定保留还是丢弃该元素。
例如,在一个list中,删掉偶数,只保留奇数,可以这么写:
def is_odd(n):
return n % 2 == 1
list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))
# 结果: [1, 5, 9, 15]
把一个序列中的空字符串删掉,可以这么写:
def not_empty(s):
return s and s.strip()
list(filter(not_empty, ['A', '', 'B', None, 'C', ' ']))
# 结果: ['A', 'B', 'C']
可见用filter()
这个高阶函数,关键在于正确实现一个“筛选”函数。
注意到filter()
函数返回的是一个Iterator
,也就是一个惰性序列,所以要强迫filter()
完成计算结果,需要用list()
函数获得所有结果并返回list。
得到所有的素数。
用Python来实现这个算法,可以先构造一个从3
开始的奇数序列:
def _odd_iter(): n = 1 while True: n = n + 2 yield n
注意这是一个生成器,并且是一个无限序列。
然后定义一个筛选函数:
def _not_divisible(n): return lambda x: x % n > 0
最后,定义一个生成器,不断返回下一个素数:
def primes(): yield 2 it = _odd_iter() # 初始序列 while True: n = next(it) # 返回序列的第一个数 yield n it = filter(_not_divisible(n), it) # 构造新序列
这个生成器先返回第一个素数2
,然后,利用filter()
不断产生筛选后的新的序列。
由于primes()
也是一个无限序列,所以调用时需要设置一个退出循环的条件:
# 打印1000以内的素数: for n in primes(): if n < 1000: print(n) else: break
注意到Iterator
是惰性计算的序列,所以我们可以用Python表示“全体自然数”,“全体素数”这样的序列,而代码非常简洁。
排序:
Python内置的sorted()
函数就可以对list进行排序:
>>> sorted([36, 5, -12, 9, -21]) [-21, -12, 5, 9, 36]
此外,sorted()
函数也是一个高阶函数,它还可以接收一个key
函数来实现自定义的排序,例如按绝对值大小排序:
>>> sorted([36, 5, -12, 9, -21], key=abs) [5, 9, -12, -21, 36]
对字符串排序,是按照ASCII的大小比较的,由于'Z' < 'a'
,结果,大写字母Z
会排在小写字母a
的前面。
忽略大小写来比较两个字符串,实际上就是先把字符串都变成大写(或者都变成小写),再比较。
这样,我们给sorted
传入key函数,即可实现忽略大小写的排序:
>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower) ['about', 'bob', 'Credit', 'Zoo']
要进行反向排序,不必改动key函数,可以传入第三个参数reverse=True
:
>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower, reverse=True) ['Zoo', 'Credit', 'bob', 'about']
从上述例子可以看出,高阶函数的抽象能力是非常强大的,而且,核心代码可以保持得非常简洁。
返回函数,闭包:
注意到返回的函数在其定义内部引用了局部变量args
,所以,当一个函数返回了一个函数后,其内部的局部变量还被新函数引用,所以,闭包用起来简单,实现起来可不容易。
另一个需要注意的问题是,返回的函数并没有立刻执行,而是直到调用了f()
才执行。我们来看一个例子:
def count(): fs = [] for i in range(1, 4): def f(): return i*i fs.append(f) return fs f1, f2, f3 = count()
在上面的例子中,每次循环,都创建了一个新的函数,然后,把创建的3个函数都返回了。
你可能认为调用f1()
,f2()
和f3()
结果应该是1
,4
,9
,但实际结果是:
>>> f1() 9 >>> f2() 9 >>> f3() 9
全部都是9
!原因就在于返回的函数引用了变量i
,但它并非立刻执行。等到3个函数都返回时,它们所引用的变量i
已经变成了3
,因此最终结果为9
。
如果一定要引用循环变量怎么办?方法是再创建一个函数,用该函数的参数绑定循环变量当前的值,无论该循环变量后续如何更改,已绑定到函数参数的值不变:
def count(): def f(j): def g(): return j*j return g fs = [] for i in range(1, 4): fs.append(f(i)) # f(i)立刻被执行,因此i的当前值被传入f() return fs
再看看结果:
>>> f1, f2, f3 = count() >>> f1() 1 >>> f2() 4 >>> f3() 9
缺点是代码较长,可利用lambda函数缩短代码。
匿名函数:
关键字lambda
表示匿名函数,冒号前面的x
表示函数参数用匿名函数有个好处,因为函数没有名字,不必担心函数名冲突。此外,匿名函数也是一个函数对象,也可以把匿名函数赋值给一个变量,再利用变量来调用该函数:
>>> f = lambda x: x * x >>> f <function <lambda> at 0x101c6ef28> >>> f(5) 25
同样,也可以把匿名函数作为返回值返回,比如:
def build(x, y): return lambda: x * x + y * y
装饰器:
在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。
本质上,decorator就是一个返回函数的高阶函数。所以,我们要定义一个能打印日志的decorator,可以定义如下:
def log(func): def wrapper(*args, **kw): print('call %s():' % func.__name__) return func(*args, **kw) return wrapper
观察上面的log
,因为它是一个decorator,所以接受一个函数作为参数,并返回一个函数。我们要借助Python的@语法,把decorator置于函数的定义处:
@log def now(): print('2015-3-25')
调用now()
函数,不仅会运行now()
函数本身,还会在运行now()
函数前打印一行日志:
>>> now() call now(): 2015-3-25
如果decorator本身需要传入参数,那就需要编写一个返回decorator的高阶函数,写出来会更复杂。比如,要自定义log的文本:
def log(text): def decorator(func): def wrapper(*args, **kw): print('%s %s():' % (text, func.__name__)) return func(*args, **kw) return wrapper return decorator
这个3层嵌套的decorator用法如下:
@log('execute') def now(): print('2015-3-25')
执行结果如下:
>>> now() execute now(): 2015-3-25
和两层嵌套的decorator相比,3层嵌套的效果是这样的:
>>> now = log('execute')(now)
一个完整的decorator的写法如下:
import functools def log(func): @functools.wraps(func) def wrapper(*args, **kw): print('call %s():' % func.__name__) return func(*args, **kw) return wrapper
或者针对带参数的decorator:
import functools def log(text): def decorator(func): @functools.wraps(func) def wrapper(*args, **kw): print('%s %s():' % (text, func.__name__)) return func(*args, **kw) return wrapper return decorator
import functools
是导入functools
模块。模块的概念稍候讲解。现在,只需记住在定义wrapper()
的前面加上@functools.wraps(func)
即可。
偏函数:
functools.partial
就是帮助我们创建一个偏函数的,不需要我们自己定义int2()
,可以直接使用下面的代码创建一个新的函数int2
:
>>> import functools >>> int2 = functools.partial(int, base=2) >>> int2('1000000') 64 >>> int2('1010101') 85
所以,简单总结functools.partial
的作用就是,把一个函数的某些参数给固定住(也就是设置默认值),返回一个新的函数,调用这个新函数会更简单。
注意到上面的新的int2
函数,仅仅是把base
参数重新设定默认值为2
,但也可以在函数调用时传入其他值:
>>> int2('1000000', base=10) 1000000
最后,创建偏函数时,实际上可以接收函数对象、*args
和**kw
这3个参数,当传入:
int2 = functools.partial(int, base=2)
实际上固定了int()函数的关键字参数base
,也就是:
int2('10010')
相当于:
kw = { 'base': 2 } int('10010', **kw)
当传入:
max2 = functools.partial(max, 10)
实际上会把10
作为*args
的一部分自动加到左边,也就是:
max2(5, 6, 7)
相当于:
args = (10, 5, 6, 7) max(*args)
结果为10
。
使用模块:
编写一个hello
的模块:
#!/usr/bin/env python3 # -*- coding: utf-8 -*-
' a test module '
__author__ = 'Michael Liao'
import sys def test():
args = sys.argv
if len(args)==1:
print('Hello, world!')
elif len(args)==2:
print('Hello, %s!' % args[1])
else:
print('Too many arguments!')
if __name__=='__main__': test()
导入sys
模块后,我们就有了变量sys
指向该模块,利用sys
这个变量,就可以访问sys
模块的所有功能。
sys
模块有一个argv
变量,用list存储了命令行的所有参数。argv
至少有一个元素,因为第一个参数永远是该.py文件的名称,例如:
运行python3 hello.py
获得的sys.argv
就是['hello.py']
;
运行python3 hello.py Michael
获得的sys.argv
就是['hello.py', 'Michael]
。
安装第三方模块:
我们推荐直接使用Anaconda,
这是一个基于Python的数据处理和科学计算平台,
它已经内置了许多非常有用的第三方库,我们装上Anaconda,就相当于把数十个第三方模块自动安装好了,非常简单易用。
默认情况下,Python解释器会搜索当前目录、所有已安装的内置模块和第三方模块,搜索路径存放在sys
模块的path
变量中:如果我们要添加自己的搜索目录,有两种方法:
一是直接修改sys.path
,添加要搜索的目录:
>>> import sys >>> sys.path.append('/Users/michael/my_py_scripts')
这种方法是在运行时修改,运行结束后失效。
第二种方法是设置环境变量PYTHONPATH
,该环境变量的内容会被自动添加到模块搜索路径中。设置方式与设置Path环境变量类似。注意只需要添加你自己的搜索路径,Python自己本身的搜索路径不受影响。
面向对象编程:
类和实例
由于类可以起到模板的作用,因此,可以在创建实例的时候,把一些我们认为必须绑定的属性强制填写进去。通过定义一个特殊的__init__
方法,在创建实例的时候,就把name
,score
等属性绑上去:
class Student(object): def __init__(self, name, score): self.name = name self.score = score
可以自由地给一个实例变量绑定属性,比如,给实例bart
绑定一个name
属性:
>>> bart.name = 'Bart Simpson' >>> bart.name 'Bart Simpson'
小结
类是创建实例的模板,而实例则是一个一个具体的对象,各个实例拥有的数据都互相独立,互不影响;
方法就是与实例绑定的函数,和普通函数不同,方法可以直接访问实例的数据;
通过在实例上调用方法,我们就直接操作了对象内部的数据,但无需知道方法内部的实现细节。
和静态语言不同,Python允许对实例变量绑定任何数据,也就是说,对于两个实例变量,虽然它们都是同一个类的不同实例,但拥有的变量名称都可能不同: