之前的处理中每一个连接都会创建一个主groutine , 每个连接中的主groutine中创建出读groutine 和写groutine
每个连接处理业务再单独开出一个groutine ,这样如果有10万并发的连接 , 将会出现30万groutine ,其中读写占20万阻塞住的 , 不占用资源。处理业务的有10万groutine ,会不停的切换 , 比较占有CPU资源 , 现在把处理业务的groutine限制住 ,创建出一个工作池,里面存的是每个worker ,每个worker groutine去读取自己对应的channel ,这个channel是个有缓存的channel作为消息队列使用
package snet import ( "bufio" "fmt" "log" "math/rand" "net" "time" ) type Conn struct { IP string Port uint32 TCPConn *net.TCPConn MsgChan chan []byte ExitChan chan bool Closed bool WorkerPool []chan []byte WorkerPoolSize uint32 PreWorkerQueue uint32 } func NewConn(IP string, Port uint32, WorkerPoolSize uint32) *Conn { s := &Conn{ IP: IP, Port: Port, MsgChan: make(chan []byte), ExitChan: make(chan bool), WorkerPool: make([]chan []byte, WorkerPoolSize), WorkerPoolSize: WorkerPoolSize, PreWorkerQueue: 1024, } return s } func (c *Conn) Start() { log.Printf("%s:%d start... ", c.IP, c.Port) go func() { c.StartWorkerPool() addr, err := net.ResolveTCPAddr("tcp4", fmt.Sprintf("%s:%d", c.IP, c.Port)) if err != nil { log.Println("resolve tcp addr err ", err) return } listener, err := net.ListenTCP("tcp4", addr) if err != nil { log.Println("listen tcp err ", err) return } var connid uint32 connid = 0 for { conn, err := listener.AcceptTCP() if err != nil { log.Println("accept tcp err ", err) continue } c.TCPConn = conn go c.StartRead() go c.StartWrite() connid++ } }() select {} } func (c *Conn) StartRead() { log.Println("read groutine is waiting") defer c.Stop() defer log.Println("read groutine exit") reader := bufio.NewReader(c.TCPConn) for { lineBytes, err := reader.ReadBytes(' ') if err != nil { log.Println("startread read bytes error ", err) break } len := len(lineBytes) line := lineBytes[:len-1] log.Println("start read from client ", string(line)) if c.WorkerPoolSize>0{ c.SendMsgToWorker(line) }else{ go c.HandleMsg(line) } } } func (c *Conn) StartWrite() { log.Println("write groutine is waiting") defer log.Println("write groutine exit") for { select { case data := <-c.MsgChan: if _, err := c.TCPConn.Write(data); err != nil { log.Println("startwrite conn write error ", err) return } log.Println("start write from server ", string(data)) case <-c.ExitChan: return } } } func (c *Conn) HandleMsg(data []byte) { res := fmt.Sprintf("res:%s", string(data)) c.MsgChan <- []byte(res) } func (c *Conn) SendMsgToWorker(data []byte) { rand.Seed(time.Now().UnixNano()) workerId := rand.Intn(int(c.WorkerPoolSize)) c.WorkerPool[workerId] <- data } func (c *Conn) StartWorkerPool() { for i := 0; i < int(c.WorkerPoolSize); i++ { c.WorkerPool[i] = make(chan []byte, c.PreWorkerQueue) go c.StartOneWorker(i, c.WorkerPool[i]) } } func (c *Conn) StartOneWorker(workerId int, queue chan []byte) { log.Println("start one worker groutine is waiting:", workerId) for { select { case data := <-queue: c.HandleMsg(data) log.Println("one worker groutine is finshed:", workerId) } } } func (c *Conn) Stop() { if c.Closed { return } c.Closed = true c.ExitChan <- true c.TCPConn.Close() close(c.ExitChan) close(c.MsgChan) }