zoukankan      html  css  js  c++  java
  • R语言大数据分析纽约市的311万条投诉统计可视化与时间序列分析

    原文链接:http://tecdat.cn/?p=9800


    介绍

    本文并不表示R在数据分析方面比Python更好或更快速,我本人每天都使用两种语言。这篇文章只是提供了比较这两种语言的机会。

    本文中的  数据  每天都会更新,我的文件版本更大,为4.63 GB。


    CSV文件包含纽约市的311条投诉。它是纽约市开放数据门户网站中最受欢迎的数据集。

    数据工作流程

     

    install.packages("devtools")
    library("devtools")
    install_github("ropensci/plotly")
    library(plotly)

    需要创建一个帐户以连接到plotly API。或者,可以只使用默认的ggplot2图形。

     
    set_credentials_file("DemoAccount", "lr1c37zw81") ## Replace contents with your API Key

     

    使用dplyr在R中进行分析

    假设已安装sqlite3(因此可通过终端访问)。

    $ sqlite3 data.db # Create your database
    $.databases       # Show databases to make sure it works
    $.mode csv        
    $.import <filename> <tablename>
    # Where filename is the name of the csv & tablename is the name of the new database table
    $.quit 

    将数据加载到内存中。

     
    library(readr)
    # data.table, selecting a subset of columns
    time_data.table <- system.time(fread('/users/ryankelly/NYC_data.csv', 
                       select = c('Agency', 'Created Date','Closed Date', 'Complaint Type', 'Descriptor', 'City'), 
                       showProgress = T))
    
    kable(data.frame(rbind(time_data.table, time_data.table_full, time_readr)))
     user.selfsys.selfelapseduser.childsys.child
    time_data.table 63.588 1.952 65.633 0 0
    time_data.table_full 205.571 3.124 208.880 0 0
    time_readr 277.720 5.018 283.029 0 0

    我将使用data.table读取数据。该 fread 函数大大提高了读取速度。

    关于dplyr

    默认情况下,dplyr查询只会从数据库中提取前10行。

    library(dplyr)      ## Will be used for pandas replacement
    
    # Connect to the database
    db <- src_sqlite('/users/ryankelly/data.db')
    db

    数据处理的两个最佳选择(除了R之外)是:

    • 数据表
    • dplyr

    预览数据

    # Wrapped in a function for display purposes
    head_ <- function(x, n = 5) kable(head(x, n))
    
    head_(data)
    AgencyCreatedDateClosedDateComplaintTypeDescriptorCity
    NYPD 04/11/2015 02:13:04 AM   Noise - Street/Sidewalk Loud Music/Party BROOKLYN
    DFTA 04/11/2015 02:12:05 AM   Senior Center Complaint N/A ELMHURST
    NYPD 04/11/2015 02:11:46 AM   Noise - Commercial Loud Music/Party JAMAICA
    NYPD 04/11/2015 02:11:02 AM   Noise - Street/Sidewalk Loud Talking BROOKLYN
    NYPD 04/11/2015 02:10:45 AM   Noise - Street/Sidewalk Loud Music/Party NEW YORK

    选择几列

     
    ComplaintTypeDescriptorAgency
    Noise - Street/Sidewalk Loud Music/Party NYPD
    Senior Center Complaint N/A DFTA
    Noise - Commercial Loud Music/Party NYPD
    Noise - Street/Sidewalk Loud Talking NYPD
    Noise - Street/Sidewalk Loud Music/Party NYPD
     
    ComplaintTypeDescriptorAgency
    Noise - Street/Sidewalk Loud Music/Party NYPD
    Senior Center Complaint N/A DFTA
    Noise - Commercial Loud Music/Party NYPD
    Noise - Street/Sidewalk Loud Talking NYPD
    Noise - Street/Sidewalk Loud Music/Party NYPD
    Noise - Street/Sidewalk Loud Talking NYPD
    Noise - Commercial Loud Music/Party NYPD
    HPD Literature Request The ABCs of Housing - Spanish HPD
    Noise - Street/Sidewalk Loud Talking NYPD
    Street Condition Plate Condition - Noisy DOT

    使用WHERE过滤行

     
    ComplaintTypeDescriptorAgency
    Noise - Street/Sidewalk Loud Music/Party NYPD
    Noise - Commercial Loud Music/Party NYPD
    Noise - Street/Sidewalk Loud Talking NYPD
    Noise - Street/Sidewalk Loud Music/Party NYPD
    Noise - Street/Sidewalk Loud Talking NYPD

    使用WHERE和IN过滤列中的多个值

     
    ComplaintTypeDescriptorAgency
    Noise - Street/Sidewalk Loud Music/Party NYPD
    Noise - Commercial Loud Music/Party NYPD
    Noise - Street/Sidewalk Loud Talking NYPD
    Noise - Street/Sidewalk Loud Music/Party NYPD
    Noise - Street/Sidewalk Loud Talking NYPD

    在DISTINCT列中查找唯一值

    ##       City
    ## 1 BROOKLYN
    ## 2 ELMHURST
    ## 3  JAMAICA
    ## 4 NEW YORK
    ## 5         
    ## 6  BAYSIDE

    使用COUNT(*)和GROUP BY查询值计数

     
    # dt[, .(No.Complaints = .N), Agency]
    #setkey(dt, No.Complaints) # setkey index's the data
    
    q <- data %>% select(Agency) %>% group_by(Agency) %>% summarise(No.Complaints = n())
    head_(q)
    AgencyNo.Complaints
    3-1-1 22499
    ACS 3
    AJC 7
    ART 3
    CAU 8

    使用ORDER和-排序结果

     

     

     

    数据库中有多少个城市?

    # dt[, unique(City)]
    
    q <- data %>% select(City) %>% distinct() %>% summarise(Number.of.Cities = n())
    head(q)
    ##   Number.of.Cities
    ## 1             1818

    让我们来绘制10个最受关注的城市

    CityNo.Complaints
    BROOKLYN 2671085
    NEW YORK 1692514
    BRONX 1624292
      766378
    STATEN ISLAND 437395
    JAMAICA 147133
    FLUSHING 117669
    ASTORIA 90570
    Jamaica 67083
    RIDGEWOOD 66411
    • 用  UPPER 转换CITY格式。
    CITYNo.Complaints
    BROOKLYN 2671085
    NEW YORK 1692514
    BRONX 1624292
      766378
    STATEN ISLAND 437395
    JAMAICA 147133
    FLUSHING 117669
    ASTORIA 90570
    JAMAICA 67083
    RIDGEWOOD 66411

    投诉类型(按城市)

    
    # Plot result
    plt <- ggplot(q_f, aes(ComplaintType, No.Complaints, fill = CITY)) + 
                geom_bar(stat = 'identity') + 
                theme_minimal() + theme(axis.text.x = element_text(angle = 45, hjust = 1))
    
    plt

    第2部分时间序列运算

    提供的数据不适合SQLite的标准日期格式。

    在SQL数据库中创建一个新列,然后使用格式化的date语句重新插入数据 创建一个新表并将格式化日期插入原始列名。

    使用时间戳字符串过滤SQLite行:YYYY-MM-DD hh:mm:ss

    # dt[CreatedDate < '2014-11-26 23:47:00' & CreatedDate > '2014-09-16 23:45:00', 
    #      .(ComplaintType, CreatedDate, City)]
    
    q <- data %>% filter(CreatedDate < "2014-11-26 23:47:00",   CreatedDate > "2014-09-16 23:45:00") %>%
        select(ComplaintType, CreatedDate, City)
    
    head_(q)
    ComplaintTypeCreatedDateCity
    Noise - Street/Sidewalk 2014-11-12 11:59:56 BRONX
    Taxi Complaint 2014-11-12 11:59:40 BROOKLYN
    Noise - Commercial 2014-11-12 11:58:53 BROOKLYN
    Noise - Commercial 2014-11-12 11:58:26 NEW YORK
    Noise - Street/Sidewalk 2014-11-12 11:58:14 NEW YORK

    使用strftime从时间戳中拉出小时单位

    # dt[, hour := strftime('%H', CreatedDate), .(ComplaintType, CreatedDate, City)]
    
    q <- data %>% mutate(hour = strftime('%H', CreatedDate)) %>% 
                select(ComplaintType, CreatedDate, City, hour)
    
    head_(q)
    ComplaintTypeCreatedDateCityhour
    Noise - Street/Sidewalk 2015-11-04 02:13:04 BROOKLYN 02
    Senior Center Complaint 2015-11-04 02:12:05 ELMHURST 02
    Noise - Commercial 2015-11-04 02:11:46 JAMAICA 02
    Noise - Street/Sidewalk 2015-11-04 02:11:02 BROOKLYN 02
    Noise - Street/Sidewalk 2015-11-04 02:10:45 NEW YORK 02

     

    ​​

    汇总时间序列

    首先,创建一个时间戳记四舍五入到前15分钟间隔的新列

    # Using lubridate::new_period()
    # dt[, interval := CreatedDate - new_period(900, 'seconds')][, .(CreatedDate, interval)]
    
    q <- data %>% 
         mutate(interval = sql("datetime((strftime('%s', CreatedDate) / 900) * 900, 'unixepoch')")) %>%                     
         select(CreatedDate, interval)
    
    head_(q, 10)
    CreatedDateinterval
    2015-11-04 02:13:04 2015-11-04 02:00:00
    2015-11-04 02:12:05 2015-11-04 02:00:00
    2015-11-04 02:11:46 2015-11-04 02:00:00
    2015-11-04 02:11:02 2015-11-04 02:00:00
    2015-11-04 02:10:45 2015-11-04 02:00:00
    2015-11-04 02:09:07 2015-11-04 02:00:00
    2015-11-04 02:05:47 2015-11-04 02:00:00
    2015-11-04 02:03:43 2015-11-04 02:00:00
    2015-11-04 02:03:29 2015-11-04 02:00:00
    2015-11-04 02:02:17 2015-11-04 02:00:00

    绘制2003年的结果

    ​​

    ​​

     

    如果您有任何疑问,请在下面发表评论。 

  • 相关阅读:
    软件工程期末考试复习(五)
    软件工程期末考试复习(四)
    软件工程期末考试复习(三)
    软件工程期末考试复习(二)
    shell脚本与mongo交互
    python使用单例模式创建MySQL链接
    python with上下文的浅谈
    Docker 基础概念科普 和 常用操作介绍
    MySQL聚集索引和非聚集索引
    为什么选择Python
  • 原文地址:https://www.cnblogs.com/tecdat/p/12092166.html
Copyright © 2011-2022 走看看