zoukankan      html  css  js  c++  java
  • 腾讯云TDSQL PostgreSQL版 -最佳实践 |优化 SQL 语句

    查看是否为分布键查询
    postgres=# explain select * from tbase_1 where f1=1;
    QUERY PLAN

    Remote Fast Query Execution (cost=0.00…0.00 rows=0 width=0)
    Node/s: dn001, dn002
    -> Gather (cost=1000.00…7827.20 rows=1 width=14)
    Workers Planned: 2
    -> Parallel Seq Scan on tbase_1 (cost=0.00…6827.10 rows=1 width=14)
    Filter: (f1 = 1)
    (6 rows)
    postgres=# explain select * from tbase_1 where f2=1;
    QUERY PLAN

    Remote Fast Query Execution (cost=0.00…0.00 rows=0 width=0)
    Node/s: dn001
    -> Gather (cost=1000.00…7827.20 rows=1 width=14)
    Workers Planned: 2
    -> Parallel Seq Scan on tbase_1 (cost=0.00…6827.10 rows=1 width=14)
    Filter: (f2 = 1)
    (6 rows)
    如上,第一个查询为非分布键查询,需要发往所有节点,这样最慢的节点决定了整个业务的速度,需要保持所有节点的响应性能一致,如第二个查询所示,业务设计查询时尽可能带上分布键。

    查看是否使用索引
    postgres=# create index tbase_2_f2_idx on tbase_2(f2);
    CREATE INDEX
    postgres=# explain select * from tbase_2 where f2=1;
    QUERY PLAN

    Remote Fast Query Execution (cost=0.00…0.00 rows=0 width=0)
    Node/s: dn001, dn002
    -> Index Scan using tbase_2_f2_idx on tbase_2 (cost=0.42…4.44 rows=1 width=14)
    Index Cond: (f2 = 1)
    (4 rows)
    postgres=# explain select * from tbase_2 where f3=‘1’;
    QUERY PLAN

    Remote Fast Query Execution (cost=0.00…0.00 rows=0 width=0)
    Node/s: dn001, dn002
    -> Gather (cost=1000.00…7827.20 rows=1 width=14)
    Workers Planned: 2
    -> Parallel Seq Scan on tbase_2 (cost=0.00…6827.10 rows=1 width=14)
    Filter: (f3 = ‘1’::text)
    (6 rows)
    postgres=#
    第一个查询使用了索引,第二个没有使用索引,通常情况下,使用索引可以加速查询速度,但索引也会增加更新的开销。

    查看是否为分布 key join
    postgres=# explain select tbase_1.* from tbase_1,tbase_2 where tbase_1.f1=tbase_2.f1 ;
    QUERY PLAN

    Remote Subquery Scan on all (dn001,dn002) (cost=29.80…186.32 rows=3872 width=40)
    -> Hash Join (cost=29.80…186.32 rows=3872 width=40)
    Hash Cond: (tbase_1.f1 = tbase_2.f1)
    -> Remote Subquery Scan on all (dn001,dn002) (cost=100.00…158.40 rows=880 width=40)
    Distribute results by S: f1
    -> Seq Scan on tbase_1 (cost=0.00…18.80 rows=880 width=40)
    -> Hash (cost=18.80…18.80 rows=880 width=4)
    -> Seq Scan on tbase_2 (cost=0.00…18.80 rows=880 width=4)
    (8 rows)
    postgres=# explain select tbase_1.* from tbase_1,tbase_2 where tbase_1.f2=tbase_2.f1 ;
    QUERY PLAN

    Remote Fast Query Execution (cost=0.00…0.00 rows=0 width=0)
    Node/s: dn001, dn002
    -> Hash Join (cost=18904.69…46257.08 rows=500564 width=14)
    Hash Cond: (tbase_1.f2 = tbase_2.f1)
    -> Seq Scan on tbase_1 (cost=0.00…9225.64 rows=500564 width=14)
    -> Hash (cost=9225.64…9225.64 rows=500564 width=4)
    -> Seq Scan on tbase_2 (cost=0.00…9225.64 rows=500564 width=4)
    (7 rows)
    第一个查询需要数据重分布,而第二个不需要,分布键 join 查询性能会更高。

    查看 join 发生的节点
    postgres=# explain select tbase_1.* from tbase_1,tbase_2 where tbase_1.f1=tbase_2.f1 ;
    QUERY PLAN

    Hash Join (cost=29.80…186.32 rows=3872 width=40)
    Hash Cond: (tbase_1.f1 = tbase_2.f1)
    -> Remote Subquery Scan on all (dn001,dn002) (cost=100.00…158.40 rows=880 width=40)
    -> Seq Scan on tbase_1 (cost=0.00…18.80 rows=880 width=40)
    -> Hash (cost=126.72…126.72 rows=880 width=4)
    -> Remote Subquery Scan on all (dn001,dn002) (cost=100.00…126.72 rows=880 width=4)
    -> Seq Scan on tbase_2 (cost=0.00…18.80 rows=880 width=4)
    (7 rows)
    postgres=# set prefer_olap to on;
    SET
    postgres=# explain select tbase_1.* from tbase_1,tbase_2 where tbase_1.f1=tbase_2.f1 ;
    QUERY PLAN

    Remote Subquery Scan on all (dn001,dn002) (cost=29.80…186.32 rows=3872 width=40)
    -> Hash Join (cost=29.80…186.32 rows=3872 width=40)
    Hash Cond: (tbase_1.f1 = tbase_2.f1)
    -> Remote Subquery Scan on all (dn001,dn002) (cost=100.00…158.40 rows=880 width=40)
    Distribute results by S: f1
    -> Seq Scan on tbase_1 (cost=0.00…18.80 rows=880 width=40)
    -> Hash (cost=18.80…18.80 rows=880 width=4)
    -> Seq Scan on tbase_2 (cost=0.00…18.80 rows=880 width=4)
    (8 rows)
    第一个 join 在 cn 节点执行,第二个在 dn 上重分布后再 join,业务设计上,一般 OLTP 类业务在 cn 上进行少数据量 join ,性能会更好。

    查看并行的 worker 数
    postgres=# explain select count(1) from tbase_1;
    QUERY PLAN

    Finalize Aggregate (cost=118.81…118.83 rows=1 width=8)
    -> Remote Subquery Scan on all (dn001,dn002) (cost=118.80…118.81 rows=1 width=0)
    -> Partial Aggregate (cost=18.80…18.81 rows=1 width=8)
    -> Seq Scan on tbase_1 (cost=0.00…18.80 rows=880 width=0)
    (4 rows)
    postgres=# analyze tbase_1;
    ANALYZE
    postgres=# explain select count(1) from tbase_1;
    QUERY PLAN

    Parallel Finalize Aggregate (cost=14728.45…14728.46 rows=1 width=8)
    -> Parallel Remote Subquery Scan on all (dn001,dn002) (cost=14728.33…14728.45 rows=1 width=0)
    -> Gather (cost=14628.33…14628.44 rows=1 width=8)
    Workers Planned: 2
    -> Partial Aggregate (cost=13628.33…13628.34 rows=1 width=8)
    -> Parallel Seq Scan on tbase_1 (cost=0.00…12586.67 rows=416667 width=0)
    (6 rows)
    上面第一个查询没走并行,第二个查询 analyze 后走并行才是正确的,建议大数据量更新再执行 analyze。

    查看各节点的执行计划是否一致
    ./tbase_run_sql_dn_master.sh “explain select * from tbase_2 where f2=1”
    dn006 — psql -h 172.16.0.13 -p 11227 -d postgres -U tbase -c “explain select * from tbase_2 where f2=1”
    QUERY PLAN

    Bitmap Heap Scan on tbase_2 (cost=2.18…7.70 rows=4 width=40)
    Recheck Cond: (f2 = 1)
    -> Bitmap Index Scan on tbase_2_f2_idx (cost=0.00…2.18 rows=4 width=0)
    Index Cond: (f2 = 1)
    (4 rows)
    dn002 — psql -h 172.16.0.42 -p 11012 -d postgres -U tbase -c “explain select * from tbase_2 where f2=1”
    QUERY PLAN

    Index Scan using tbase_2_f2_idx on tbase_2 (cost=0.42…4.44 rows=1 width=14)
    Index Cond: (f2 = 1)
    (2 rows)
    两个 dn 的执行计划不一致,最大可能是数据倾斜或者是执行计划被禁用。
    如有可能,DBA 可以配置在系统空闲时执行全库 analyze 和 vacuum。

  • 相关阅读:
    HDU 2188 悼念512汶川大地震遇难同胞——选拔志愿者
    博弈论小结
    HDU 2149 Public Sale
    有上下界限制的网络流-总结
    loj #117. 有源汇有上下界最小流
    jquery中not的用法[.not(selector)]
    Assert随笔
    Maps.newHashMapWithExpectedSize(2)
    java1.8操作日期
    控制input只输入数字--- onkeyup="value=value.replace(/[^d]/g,'')"
  • 原文地址:https://www.cnblogs.com/tencentdb/p/15130104.html
Copyright © 2011-2022 走看看