zoukankan      html  css  js  c++  java
  • (Java) LeetCode 413. Arithmetic Slices —— 等差数列划分

    A sequence of number is called arithmetic if it consists of at least three elements and if the difference between any two consecutive elements is the same.

    For example, these are arithmetic sequence:

    1, 3, 5, 7, 9
    7, 7, 7, 7
    3, -1, -5, -9

    The following sequence is not arithmetic.

    1, 1, 2, 5, 7

    A zero-indexed array A consisting of N numbers is given. A slice of that array is any pair of integers (P, Q) such that 0 <= P < Q < N.

    A slice (P, Q) of array A is called arithmetic if the sequence:
    A[P], A[p + 1], ..., A[Q - 1], A[Q] is arithmetic. In particular, this means that P + 1 < Q.

    The function should return the number of arithmetic slices in the array A.

    Example:

    A = [1, 2, 3, 4]
    return: 3, for 3 arithmetic slices in A: [1, 2, 3], [2, 3, 4] and [1, 2, 3, 4] itself.
    

    想了半天这道题竟然是一道找规律问题…有的时候真的难以捉摸什么问题需要推导,什么问题是找规律。

    如果数组是{1,2,3},结果是1;

    如果数组是{1,2,3,4},结果是3;

    如果数组是{1,2,3,4,5},结果是6;

    如果是数组是{1,2,3,4,5,6},结果是10……

    也就是说如果新扫描到的元素仍能和之前的元素保持等差数列关系,那么新形成的子等差数列个数按照1,2,3,4……的规律增加。其实找到规律这道题就做出来了。所以本题根本是寻找差子数列的终点,并以此时的结果增量更新最终结果。不满足等差数列的时候增量就要重置为1。见下文代码。


    Java

    class Solution {
        public int numberOfArithmeticSlices(int[] A) {
            if (A == null || A.length <= 2) return 0;
            int cur = 1, res = 0, diff = A[1] - A[0];
            for (int i = 2; i < A.length; i++) {
                if (A[i] - A[i-1] == diff) res += cur++;
                else {
                    diff = A[i] - A[i-1];
                    cur = 1;
                }
            }
            return res;
        }   
    }
  • 相关阅读:
    mall
    将UNICODE编码转换为中文
    460. LFU Cache
    957. Prison Cells After N Days
    455. Assign Cookies
    453. Minimum Moves to Equal Array Elements
    434. Number of Segments in a String
    1203. Sort Items by Groups Respecting Dependencies
    641. Design Circular Deque
    441. Arranging Coins
  • 原文地址:https://www.cnblogs.com/tengdai/p/9300899.html
Copyright © 2011-2022 走看看