概述
与前面说的Floyd算法相比,Dijkstra算法只能求得图中特定顶点到其余所有顶点的最短路径长度,即单源最短路径问题。
算法思路
1、初始化,集合K中加入顶点v,顶点v到其自身的最短距离为0,到其它所有顶点为无穷。
2、遍历与集合K中结点直接相邻的边(U,V,C),其中U属于集合K,V不属于集合K,计算由结点v出发,按照已经得到的最短路径到达U,再由U经过该边达到V时的路径长度。比较所有与集合K中结点直接相邻的非集合K结点该路径长度,其中路径长度最小的顶点被确定为下一个最短路径确定的结点,其最短路径长度即为该路径长度,最后将该结点并入集合K。
3、若集合K中已经包含了所有的点,算法结束,否则重复步骤2。
给出Dijkstra算法的代码
#include"stdafx.h" #include <iostream> using namespace std; const int MAXSIZE = 10; const int INF = 99999;//当作最大值 typedef struct VertexNode{ int Index;//点的编号默认为从1开始 char info; }; typedef struct MGraph{ int edges[MAXSIZE][MAXSIZE]; VertexNode nodes[MAXSIZE]; int n, e; }; //构建一个用邻接矩阵存储的图 void CreateMGraph(MGraph& g,int n,int e); //迪杰斯特拉算法求图的最短路径 void DijkStra(MGraph& g, int v, int dist[], int path[]); //输出该最短路径 void PrintRoad(int path[],int v); void main(void) { MGraph g; int dist[MAXSIZE]; int path[MAXSIZE]; CreateMGraph(g, 7, 12); DijkStra(g, 1, dist, path); PrintRoad(path, 7); } void CreateMGraph(MGraph& g, int n,int e) { g.n = n; g.e = e; int vertex1, vertex2; int value; for (int i = 1; i <= n; ++i) { g.nodes[i].Index = i; } for (int i = 1; i <= g.n; ++i) for (int j = 1; j <= g.n; ++j) { g.edges[i][j] = INF; } for (int j = 1; j <= e; j++) { cout << "请输入边的两个点,中间以空格隔开 "; cin >> vertex1 >> vertex2; cout << "请输入该边的权值 "; cin >> value; g.edges[vertex1][vertex2] = value; } } void DijkStra(MGraph& g, int v,int dist[], int path[]) { int i, j, min, u; int visited[MAXSIZE]; for (i = 1; i <= g.n; ++i) { if (g.edges[v][i] < INF) { dist[i] = g.edges[v][i]; path[i] = v; } else { dist[i] = -1; path[i] = -1; } visited[i] = 0; } visited[v] = 1; for (i = 1; i <= g.n; ++i) { min = INF; for (j = 1; j <= g.n;++j) if (visited[j] == 0 && dist[j] < min) { min = dist[j]; u = j; } visited[u] = 1; for (j = 1; j <= g.n; ++j) { if (visited[j] == 0 && dist[j] > g.edges[u][j] + dist[u]) { dist[j] = g.edges[u][j] + dist[u]; path[j] = u; } } } } void PrintRoad(int path[],int v) { int stack[MAXSIZE], top = -1; while (path[v]!= -1) { stack[++top] = v; v = path[v]; } stack[++top] = v; while (top != -1) { cout << stack[top--] << " "; } cout << endl; }