信息学竞赛中,有关生成树的最优化问题如最小生成树等是我们经常遇到的,而对生成树的计数及其相关问题则少有涉及。事实上,生成树的计数是十分有意义的,在许多方面都有着广泛的应用。本文从一道信息学竞赛中出现的例题谈起,首先介绍了一种指数级的动态规划算法,然后介绍了行列式的基本概念、性质,并在此基础上引入Matrix-Tree定理,同时通过与一道数学问题的对比,揭示了该定理所包含的数学思想。最后通过几道例题介绍了生成树的计数在信息学竞赛中的应用,并进行总结。
生成树的计数 Matrix-Tree定理
问题的提出
[例一]高速公路(SPOJ 104 Highways)
一个有n座城市的组成国家,城市1至n编号,其中一些城市之间可以修建高速公路。现在,需要有选择的修建一些高速公路,从而组成一个交通网络。你的任务是计算有多少种方案,使得任意两座城市之间恰好只有一条路径?
数据规模:1≤n≤12。
[分析]
我们可以将问题转化到成图论模型。因为任意两点之间恰好只有一条路径,所以我们知道最后得到的是原图的一颗生成树。因此,我们的问题就变成了,给定一个无向图G,求它生成树的个数t(G)。这应该怎么做呢?
经过分析,我们可以得到一个时间复杂度为O(3n*n2)的动态规划算法,因为原题的规模较小,可以满足要求。但是,当n再大一些就不行了,有没有更优秀的算法呢?答案是肯定的。在介绍算法之前,首先让我们来学习一些基本的预备知识。
新的方法介绍
下面我们介绍一种新的方法——Matrix-Tree定理(Kirchhoff矩阵-树定理)。Matrix-Tree定理是解决生成树计数问题最有力的武器之一。它首先于1847年被Kirchhoff证明。在介绍定理之前,我们首先明确几个概念:
1、G的度数矩阵D[G]是一个n*n的矩阵,并且满足:当i≠j时,dij=0;当i=j时,dij等于vi的度数。
2、G的邻接矩阵A[G]也是一个n*n的矩阵, 并且满足:如果vi、vj之间有边直接相连,则aij=1,否则为0。
我们定义G的Kirchhoff矩阵(也称为拉普拉斯算子)C[G]为C[G]=D[G]-A[G],则Matrix-Tree定理可以描述为:G的所有不同的生成树的个数等于其Kirchhoff矩阵C[G]任何一个n-1阶主子式的行列式的绝对值。所谓n-1阶主子式,就是对于r(1≤r≤n),将C[G]的第r行、第r列同时去掉后得到的新矩阵,用Cr[G]表示。
生成树计数
算法步骤:
1、 构建拉普拉斯矩阵
Matrix[i][j] =
degree(i) , i==j
-1,i-j有边
0,其他情况
2、 去掉第r行,第r列(r任意)
3、 计算矩阵的行列式
论文 周冬 《生成树计数应用》
#include <map> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; typedef long long ll; const int maxn = 105; const int maxm = 100005; const int INF = 1e9; int degree[maxn]; ll g[maxn][maxn]; int n, m; ll det(ll a[][maxn], int n) { ll ret = 1; for(int i=1; i<n; ++i){ for(int j=i+1; j<n; ++j){ while(a[j][i]){ ll t = a[i][i]/a[j][i]; for(int k=i; k<n; ++k){ a[i][k] = (a[i][k]-a[j][k]*t); } for(int k=i; k<n; ++k){ swap(a[i][k], a[j][k]); } ret = -ret; } } if(a[i][i]==0){ return 0; } ret = ret*a[i][i]; } if(ret<0){ ret = -ret; } return ret; } void solve() { int u, v; memset(degree, 0, sizeof degree ); memset(g, 0, sizeof g ); scanf("%d%d", &n, &m); while(m--){ scanf("%d%d", &u, &v); u--,v--; g[u][v] = g[v][u] = -1; degree[u]++; degree[v]++; } for(int i=0; i<n; ++i){ g[i][i] = degree[i]; } printf("%lld ", det(g, n)); } int main() { int t; scanf("%d", &t); while(t--){ solve(); } return 0; }