zoukankan      html  css  js  c++  java
  • 退群咕咕墙

    1021:
    以下均默认在定义域为((0,inf))的前提下讨论。

    (F(x)=G(x))变一个形,可以得到:

    [a=frac{xe^x+1}{e^x -1} ]

    题意转化为(y=a)和右边这个函数只有一个交点,这个函数设为(H(x))

    (H(x))求导,过程不展开了,结果是:

    [H'(x)=frac{e^x imes (e^x-x-2)}{(e^x-1)^2} ]

    (e^x,e^x-1)(x>0)时恒大于(0),只需要考察((e^x-x-2))。设((e^x-x-2)=0)的正根为(x_0),则(H'(x))((0,x_0))(<0),在((x_0,inf))(>0),那么(H(x))的极小值为(H(x_0))。由于(x_0)满足(e^{x_0}=x_0+2),所以(H(x_0)=frac{x_{0}(x_0+2)+1}{(x_0+2)-1}=frac{(x_{0}+1)^2}{(x_0+1)}=x_0+1),由于(x_0)((1,1.5))之间,所以(H(x_0))((2,2.5))之间。

    根据导函数可以画出大致图像,在最下方。至此,我们如果能再证明在(x)趋近于(0)(inf)的时候,函数值也趋近于(inf)时,就完成了证明,因为任何的(a>H(x_0))在定义域上一定有两个解,任何的(a<H(x_0))在定义域上一定没有解,不符合题意。

    下面给出这两个命题的感性证明。

    证明(x)趋近于 (inf) 时函数值趋近于(inf)

    [H(x)=frac{xe^x+1}{e^x -1}=x+frac{x+1}{e^x -1}> x ]

    因为(x)趋近于(inf)时,其本身趋近于(inf),故(H(x))作为一个严格大于(x)的函数,(x)趋近于(inf)时,其本身趋近于(inf)

    证明(x)趋近于 (0) 时函数值趋近于(inf)

    [H(x)=frac{xe^x+1}{e^x -1}> frac{1}{e^x -1} ]

    因为(x)趋近于 (0) 时,(frac{1}{e^x -1})趋近于(inf),故(H(x))作为一个严格大于(frac{1}{e^x -1})的函数,(x)趋近于(inf)时,其本身趋近于(inf)

  • 相关阅读:
    让文字在标签li的底部
    根据不同的浏览器对不同元素进行css调整
    根据ie浏览器不同的类别选择不同的css
    ASP流程控制语句
    asp动态生成google的sitemap地图的代码
    glusterfs 思维导图
    利用saltstack管理边缘计算节点
    ACK EDGE 实战
    /dev/shm 容器下调优
    MySQL DBA 001
  • 原文地址:https://www.cnblogs.com/thedreammaker/p/12805126.html
Copyright © 2011-2022 走看看