zoukankan      html  css  js  c++  java
  • 欧拉工程第66题:Diophantine equation

    题目链接

    脑补知识:佩尔方差

    image

    上面说的貌似很明白,最小的i,对应最小的解

    然而我理解成,一个循环的解了,然后就是搞不对,后来,仔细看+手工推导发现了问题。i从0开始变量,知道第一个满足等式的解就是最小解。

    问题转化为求根号n的连分数问题,分子就是x,分母就是y

    要求的分子,分母,问题又转化为:根号n的连分数表示,对,求出其连分数表示就OK了

    image

    先求出a的序列是什么?

    第64题,就是求a的序列的。

    a求出来了,要求出分子分母的表达式。

    第65题,就是已经知道了a的序列,求分子,当然也可以求分母的

    分子,分母求出来了,在验证:X*X-D*Y*Y=1时候就是最小解

    问题真是一环套一环的。

    Python程序:

    import time as time 
    
    start = time.time()
    
    def getD(N):
        x_max ,y_max= 0,0 
        D = 0
        x,y = 0,0
        for S in range(2,N+1):
            x,y = resolve(S)
            if x>x_max:
                x_max ,y_max= x,y 
                D = S 
        return D,x_max,y_max
    
    def resolve(S):
        m = 0 
        d = 1 
        a0 = int(S**0.5)
        if a0*a0 == S :return -1,-1;
        a= a0
        li = [a]
        x,y = 1,1
        while x*x-S*y*y!=1:
            m = d*a - m
            d = (S - m*m)/d 
            a = int((a0 + m)/d)
            li.append(a)
            x = getX(li)
            y = getY(li)
    #     print li
        return x,y;
    
    def getX(li):
        x0 = 1
        x1 = li[0]
        li = li[1:]
        for l in li:
            x = l * x1 + x0
            x0 = x1
            x1 = x      
        return x 
    
    def getY(li):
        y0 = 0
        y1 = 1
        li = li[1:]
        for l in li:
            y = l * y1 + y0 
            y0 = y1 
            y1 = y 
        return y 
    
    if __name__ == '__main__':
    
        start = time.time()
        N = 1000
        D ,x_max,y_max= getD(N)
        print "running time={0}seconds,D={1},x_max={2},y_max={3}".format(time.time()-start,D,x_max,y_max)

    求的是最小解X的最大值时候的D,答案是661

    然而:

    x_max=16421658242965910275055840472270471049

    y_max=638728478116949861246791167518480580

    这个值好大的


    附一:python程序:

    from math import sqrt
    from time import time
    
    def prefect_sqrt(n):
        return int(sqrt(n))**2 == n 
    
    def floor_root(n):
        return int(sqrt(n))
    
    def chakravals(n):
        x_max = 0 
        for d in range(2,n+1):
            if not prefect_sqrt(d):
                p1 = floor_root(d)
                q1 = 1 
                m1 = p1**2 - d 
    #             print -p1,(-p1) % abs(m1),(-p1) % abs(m1)
                if (-p1) % abs(m1) ==0:
                    x1 = abs(m1)
                else:
                    x1 = (-p1) % abs(m1)
                    
                while m1!=1:
                    p0 = p1
                    q0 = q1
                    m0 = m1
                    x0 = x1
                    
                    p1 = (p0 * x0 +d *q0)/abs(m0)
                    q1 = (p0 + x0)/abs(m0)
                    
                    m1 = (x0**2 -d)/m0 
                    
                    if (-x0)%abs(m1) ==0:
                        x1 = abs(x0)
                    else:
                        x1 = (-x0)%abs(m1)
                if p1>x_max:
                    x_max = p1 
                    d_max = d 
                    print "d= %04d  x = %d"%(d_max,x_max)
        print 
        
    if __name__=='__main__':
        start = time()
        chakravals(1000)
        end = time()
        print "time elapse=%f"%(end - start)

    Java程序:

    这个跑的好慢的

    package project61;
    import java.math.*;  
    
    
    public class P66   
    {  
        public static final int precision = 500;  
        public static void main( String args[] )  
        {  
            BigInteger Max = new BigInteger("0");   
            int ans = 0;  
              
    outer:  for (int D_i = 2; D_i <= 1000; D_i++)  
            {  
                BigDecimal D = new BigDecimal(D_i);  
                BigDecimal SD = calculation.Sqrt(D);  
                  
                BigDecimal SD_i = SD.setScale(0, BigDecimal.ROUND_FLOOR);  
                if (SD_i.multiply(SD_i).equals(D))  
                    continue;  
                  
                int a[] = calculation.toContinuedFraction(SD, 100);  
                  
                for (int i = 1; i < 100; i++)  
                {  
                    Fraction temp = new Fraction(a[i],1);  
                      
                    for (int j = i - 1; j >= 0; j--)  
                        temp = Fraction.Compute(a[j], temp);  
                      
                    BigInteger y_2 = temp.denominator.multiply(temp.denominator);  
                    BigInteger x_2 = temp.numerator.multiply(temp.numerator);  
                    BigInteger result = x_2.subtract(y_2.multiply(D.toBigIntegerExact())).subtract(BigInteger.ONE);  
                      
                    if (result.equals(BigInteger.ZERO))  
                    {  
                        if (temp.numerator.compareTo(Max) > 0)  
                        {  
                            Max = temp.numerator;  
                            ans = D_i;  
                        }  
                          
                        continue outer;  
                    }  
                  
                }  
                System.out.print("Warning!
    ");  
                  
            }  
            System.out.print(ans+"
    ");  
        }  
    }  
      
    class Fraction  
    {  
        public BigInteger numerator;  
        public BigInteger denominator;  
          
        private Fraction()  
        {  
              
        }  
        public Fraction (int numerator, int denominator)  
        {  
            this.numerator = BigInteger.valueOf(numerator);  
            this.denominator = BigInteger.valueOf(denominator);  
        }  
        public static Fraction Compute(int p1, Fraction p2)  
        {  
            Fraction ans = new Fraction();  
            ans.numerator = p2.denominator.add(p2.numerator.multiply(BigInteger.valueOf(p1)));  
            ans.denominator = p2.numerator.add(BigInteger.ZERO);  
            return ans;  
        }  
    }  
      
      
    class calculation  
    {  
        private static final BigDecimal N0 = new BigDecimal(0);  
        private static final BigDecimal N1 = new BigDecimal(1);   
        private static final BigDecimal N2 = new BigDecimal(2);  
          
        public static BigDecimal Sqrt(BigDecimal In)  
        {  
            BigDecimal N = new BigDecimal(1);  
            while(true)  
            {  
                BigDecimal NN = N.multiply(N);  
                NN = NN.add(In);  
                NN = NN.divide(N2);  
                NN = NN.divide(N, P66.precision, BigDecimal.ROUND_FLOOR);  
                  
                if (NN.equals(N))  
                    break;  
                  
                N = NN;  
            }  
              
            return N;  
        }  
        public static int[] toContinuedFraction(BigDecimal In, int l)  
        {  
            int ans[] = new int[l];  
              
              
            BigDecimal temp = In.add(N0);  
            for (int i = 0; i < l; i++)  
            {  
                ans[i] = Integer.valueOf(temp.setScale(0, BigDecimal.ROUND_FLOOR).toString()).intValue();  
                temp = temp.subtract(temp.setScale(0, BigDecimal.ROUND_FLOOR));  
                temp = N1.divide(temp, P66.precision, BigDecimal.ROUND_FLOOR);  
            }  
            return ans;  
        }  
    }

    最后两个程序在网上复制过来的

  • 相关阅读:
    国内最火的3款前端开发框架
    Cordova是做什么的
    老师你好。使用cordova生成的hellowold 的安卓5.0版本太高。怎么才可以生成4.4的呢?
    一个类似bootstrap的foundation
    role在标签中的作用是什么?
    如何做到根据不同的进度用不同的颜色显示整个进度条
    wall 和panel有啥区别
    git ignore
    eclipse js 引用跳转
    计划
  • 原文地址:https://www.cnblogs.com/theskulls/p/4786969.html
Copyright © 2011-2022 走看看