zoukankan      html  css  js  c++  java
  • HDU 6318 Swaps and Inversions 思路很巧妙!!!(转换为树状数组或者归并求解逆序数)

    Swaps and Inversions

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2315    Accepted Submission(s): 882


    Problem Description
    Long long ago, there was an integer sequence a.
    Tonyfang think this sequence is messy, so he will count the number of inversions in this sequence. Because he is angry, you will have to pay x yuan for every inversion in the sequence.
    You don't want to pay too much, so you can try to play some tricks before he sees this sequence. You can pay y yuan to swap any two adjacent elements.
    What is the minimum amount of money you need to spend?
    The definition of inversion in this problem is pair (i,j) which 1i<jn and ai>aj.
     
    Input
    There are multiple test cases, please read till the end of input file.
    For each test, in the first line, three integers, n,x,y, n represents the length of the sequence.
    In the second line, n integers separated by spaces, representing the orginal sequence a.
    1n,x,y100000, numbers in the sequence are in [109,109]. There're 10 test cases.
     
    Output
    For every test case, a single integer representing minimum money to pay.
     
    Sample Input
    3 233 666 1 2 3 3 1 666 3 2 1
     
    Sample Output
    0 3
     
    Source
     
    题目意思:
    给你一个长度为n的数列
    开始检查,如果某两个数不是从小大大顺序的,有一个就罚x元,
    或者也可以直接在检查之前对不符合要求的调换位置(相邻的)
    花费y元
    然后要你求最小的花费
    所以就是直接求这个序列的逆序数然后乘以x和y花费中较小的一个
    逆序数可以归并或者数状数组求解
     
    方法1归并:
    #include<stdio.h>
    #include<memory>
    #include<algorithm>
    #define max_v 100005
    using namespace std;
    typedef long long LL;
    LL a[max_v];
    LL temp[max_v];
    LL ans;
    void mer(int s,int m,int t)
    {
        int i=s;
        int j=m+1;
        int k=s;
        while(i<=m&&j<=t)
        {
            if(a[i]<=a[j])
            {
                temp[k++]=a[i++];
            }else
            {
                ans+=j-k;//求逆序数
                temp[k++]=a[j++];
            }
        }
        while(i<=m)
        {
            temp[k++]=a[i++];
        }
        while(j<=t)
        {
            temp[k++]=a[j++];
        }
    }
    void cop(int s,int t)
    {
        for(int i=s;i<=t;i++)
            a[i]=temp[i];
    }
    void megsort(int s,int t)
    {
        if(s<t)
        {
            int m=(s+t)/2;
            megsort(s,m);
            megsort(m+1,t);
            mer(s,m,t);
            cop(s,t);
        }
    }
    int main()
    {
        int n;
        LL c1,c2;
        while(~scanf("%d %lld %lld",&n,&c1,&c2))
        {
            if(n==0)
                break;
            ans=0;
            for(int i=0;i<n;i++)
                scanf("%lld",&a[i]);
            megsort(0,n-1);
            printf("%lld
    ",ans*min(c1,c2));
        }
        return 0;
    }
    /*
    题目意思:
    给你一个长度为n的数列
    开始检查,如果某两个数不是从小大大顺序的,有一个就罚x元,
    或者也可以直接在检查之前对不符合要求的调换位置(相邻的)
    花费y元
    然后要你求最小的花费
    所以就是直接求这个序列的逆序数然后乘以x和y花费中较小的一个
    逆序数可以归并或者数状数组求解
    */

     方法二:

    直接树状树组加离散化

    离散化其实就是数据范围压缩!!!,注意理解

    #include<queue>
    #include<set>
    #include<cstdio>
    #include <iostream>
    #include<algorithm>
    #include<cstring>
    #include<cmath>
    using namespace std;
    #define max_v 500005
    int n;
    struct node
    {
        int v;
        int pos;
    } p[max_v];
    int c[max_v];
    int re[max_v];
    int maxx;
    int lowbit(int x)
    {
        return x&(-x);
    }
    void update(int x,int d)
    {
        while(x<max_v)
        {
            c[x]+=d;
            x+=lowbit(x);
        }
    }
    int getsum(int x)//返回1到x中小与等于x的数量
    {
        int res=0;
        while(x>0)
        {
            res+=c[x];
            x-=lowbit(x);
        }
        return res;
    }
    bool cmp(node a,node b)
    {
       if(a.v!=b.v)
         return a.v<b.v;
       else
        return a.pos<b.pos;
    }
    int main()
    {
        long long c1,c2;
        while(~scanf("%d %lld %lld",&n,&c1,&c2))
        {
            if(n==0)
                break;
            memset(c,0,sizeof(c));
            for(int i=1;i<=n;i++)
            {
                scanf("%d",&p[i].v);
                p[i].pos=i;
            }
    
            sort(p+1,p+1+n,cmp);
    
            long long ans=0;
            for(int i=1;i<=n;i++)
            {
                ans+=(i-getsum(p[i].pos)-1);//先找再更新,避免getsum的时候算上自己
                update(p[i].pos,1);
            }
            printf("%lld
    ",ans*min(c1,c2));
        }
        return 0;
    }
    [ Copy to Clipboard ]    [ Save to File]
  • 相关阅读:
    MyBatis学习总结_17_Mybatis分页插件PageHelper
    MyBatis学习总结_16_Mybatis使用的几个建议
    MyBatis学习总结_15_定制Mybatis自动代码生成的maven插件
    MyBatis学习总结_14_Mybatis使用技巧总结
    MyBatis学习总结_13_Mybatis查询之resultMap和resultType区别
    Git实战之Git创建版本库
    Oracle数据库之日期函数
    Oracle数据库之单表查询
    版本发布后测试人员需要做的工作
    oracle数据库之数据插入、修改和删除
  • 原文地址:https://www.cnblogs.com/yinbiao/p/9471010.html
Copyright © 2011-2022 走看看