zoukankan      html  css  js  c++  java
  • Project Euler 75:Singular integer right triangles

    题目链接

    原题:

    It turns out that 12 cm is the smallest length of wire that can be bent to form an integer sided right angle triangle in exactly one way, but there are many more examples.

    12 cm: (3,4,5)
    24 cm: (6,8,10)
    30 cm: (5,12,13)
    36 cm: (9,12,15)
    40 cm: (8,15,17)
    48 cm: (12,16,20)

    In contrast, some lengths of wire, like 20 cm, cannot be bent to form an integer sided right angle triangle, and other lengths allow more than one solution to be found; for example, using 120 cm it is possible to form exactly three different integer sided right angle triangles.

    120 cm: (30,40,50), (20,48,52), (24,45,51)

    Given that L is the length of the wire, for how many values of L ≤ 1,500,000 can exactly one integer sided right angle triangle be formed?

    翻译:

    唯一的整数边直角三角形

    只能唯一地弯折成整数边直角三角形的电线最短长度是12厘米;当然,还有很多长度的电线都只能唯一地弯折成整数边直角三角形,例如:

    12厘米: (3,4,5)
    24厘米: (6,8,10)
    30厘米: (5,12,13)
    36厘米: (9,12,15)
    40厘米: (8,15,17)
    48厘米: (12,16,20)

    相反地,有些长度的电线,比如20厘米,不可能弯折成任何整数边直角三角形,而另一些长度则有多个解;例如,120厘米的电线可以弯折成三个不同的整数边直角三角形。

    120厘米: (30,40,50), (20,48,52), (24,45,51)

    记电线长度为L,对于L ≤ 1,500,000,有多少种取值只能唯一地弯折成整数边直角三角形?

    翻译来源

    解题思路:

    先参看维基百科,如下:

    image

    对正整数m、n,且m>n

    image

    若a 、b、c能构成直角三角形 ,则当且仅当:m和n互质,m-n是奇数

    同时a、b、c乘以k的整数倍也能够成直角三角形。

    解题方法就很明显的

    先考虑m的取值范围

    a、b是直角边、c是斜边,极端情况下:a=c=L/2,b=0,则n=0,m2  =L/2,则m = sqrt(L/2)

    这样在依靠上面的公式即可

    Java程序:

    package Level3;
    
    public  class PE075{
        
        void run(){
        int L = 1500000;
        int max_m = (int)Math.sqrt(L/2);
        int[] triple = new int[L+1];
        int a,b,c;
        int s;
        for(int m=2;m<=max_m;m++){
            for(int n=1;n<m;n++){
                if(gcd(m,n)==1 && (m+n)%2==1){
                a = m*m-n*n;
                b = 2*m*n;
                c = m*m+n*n;
                s = a+b+c;
    //            if(a*a+b*b==c*c){
                    while(s<=L){
                        triple[s]+=1;
                        s+=a+b+c;
                    }
    //            }
                }
            }
        }
        int count=0;
        for(int i=2;i<=L;i++)
            if(triple[i]==1)
                count++;
        System.out.println(count);
        
        }
        
        int gcd(int m,int n){
            int tmp;
            if(m<n){
                tmp=m;
                m=n;
                n=tmp;
            }
            while(n!=0){
                m = m - n;
                if(m<n){
                    tmp = m;
                    m = n;
                    n = tmp;
                }
            }
            return m;
        }
        
        public static void main(String[] args){
            long t0 = System.currentTimeMillis();
            new PE075().run();
            long t1 = System.currentTimeMillis();
            long t = t1 - t0;
            System.out.println("running time="+t/1000+"s"+t%1000+"ms");
        }
    }

    运行结果:

    161667
    running time=0s72ms

    Python程序:

    import math 
    import time 
    def gcd(m,n):
        if m<n:
            tmp = n
            n = m 
            m = tmp 
        while n:
            m = m%n 
            if m<n:
                tmp = n 
                n = m 
                m = tmp 
        return m  
    
    def PE075():
        L = 1500000
        count = 0
        max_m = int(math.sqrt(L/2))
        triple = [0 for i in range(0,L+1)]
        for m in range(2,max_m+1):
            for n in range(1,m):
                if gcd(m,n)==1 and (m+n)%2==1:
                    a = m*m-n*n 
                    b = 2*m*n 
                    c = m*m+n*n 
                    s = a+b +c 
                    while s<=L:
                        triple[s] +=1 
                        if triple[s]==1:
                            count+=1
                        if triple[s]==2:
                            count-=1
                        s+= a+b+c 
        return count
      
    if __name__=='__main__':
        t0 = time.time()
        print "result={0},running time={1}s".format(PE075(),(time.time()-t0))

    运行结果:

    result=161667,running time=1.09399986267s
  • 相关阅读:
    实战篇之实现 OutLook 中以 EDM 形式发送通知邮件
    ASP.NET MVC5 之路由器
    ASP.NET MVC5 之数据迁移
    说不出的烦
    ASP.NET MVC5 之 Log4Net 的学习和使用
    读取配置文件参数和文件路径
    序列化和反序列化示例
    面向对象之封装
    面向对象4之常用的乱七八糟
    面向对象三之继承和派生
  • 原文地址:https://www.cnblogs.com/theskulls/p/4850232.html
Copyright © 2011-2022 走看看