zoukankan      html  css  js  c++  java
  • 浅谈压缩感知(二十六):压缩感知重构算法之分段弱正交匹配追踪(SWOMP)...

    浅谈压缩感知(二十六):压缩感知重构算法之分段弱正交匹配追踪(SWOMP)...

    主要内容:

    1. SWOMP的算法流程
    2. SWOMP的MATLAB实现
    3. 一维信号的实验与结果
    4. 门限参数a、测量数M与重构成功概率关系的实验与结果
    5. SWOMP与StOMP性能比较

    一、SWOMP的算法流程

    分段弱正交匹配追踪(Stagewise Weak OMP)可以说是StOMP的一种修改算法,它们的唯一不同是选择原子时的门限设置,这可以降低对测量矩阵的要求。我们称这里的原子选择方式为"弱选择"(Weak Selection),StOMP的门限设置由残差决定,这对测量矩阵(原子选择)提出了要求,而SWOMP的门限设置则对测量矩阵要求较低(原子选择相对简单、粗糙)。

    SWOMP的算法流程:

    二、SWOMP的MATLAB实现(CS_SWOMP.m)

    function [ theta ] = CS_SWOMP( y,A,S,alpha )
    %   CS_SWOMP
    %   Detailed explanation goes here
    %   y = Phi * x
    %   x = Psi * theta
    %    y = Phi*Psi * theta
    %   令 A = Phi*Psi, 则y=A*theta
    %   S is the maximum number of SWOMP iterations to perform
    %   alpha is the threshold parameter
    %   现在已知y和A,求theta
    %   Reference:Thomas Blumensath,Mike E. Davies.Stagewise weak gradient
    %   pursuits[J].IEEE Transactions on Signal Processing,2009,57(11):4333-4346.
        if nargin < 4
            alpha = 0.5; %alpha范围(0,1),默认值为0.5
        end
        if nargin < 3
            S = 10; %S默认值为10
        end
        [y_rows,y_columns] = size(y);
        if y_rows<y_columns
            y = y'; %y should be a column vector
        end
        [M,N] = size(A); %传感矩阵A为M*N矩阵
        theta = zeros(N,1); %用来存储恢复的theta(列向量)
        Pos_theta = []; %用来迭代过程中存储A被选择的列序号
        r_n = y; %初始化残差(residual)为y
        for ss=1:S %最多迭代S次
            product = A'*r_n; %传感矩阵A各列与残差的内积
            sigma = max(abs(product));
            Js = find(abs(product)>=alpha*sigma); %选出大于阈值的列
            Is = union(Pos_theta,Js); %Pos_theta与Js并集
            if length(Pos_theta) == length(Is)
                if ss==1
                    theta_ls = 0; %防止第1次就跳出导致theta_ls无定义
                end
                break; %如果没有新的列被选中则跳出循环
            end
            %At的行数要大于列数,此为最小二乘的基础(列线性无关)
            if length(Is)<=M
                Pos_theta = Is; %更新列序号集合
                At = A(:,Pos_theta); %将A的这几列组成矩阵At
            else%At的列数大于行数,列必为线性相关的,At'*At将不可逆
                if ss==1
                    theta_ls = 0; %防止第1次就跳出导致theta_ls无定义
                end
                break; %跳出for循环
            end
            %y=At*theta,以下求theta的最小二乘解(Least Square)
            theta_ls = (At'*At)^(-1)*At'*y; %最小二乘解
            %At*theta_ls是y在At列空间上的正交投影
            r_n = y - At*theta_ls; %更新残差
            if norm(r_n)<1e-6 %Repeat the steps until r=0
                break; %跳出for循环
            end
        end
        theta(Pos_theta)=theta_ls;%恢复出的theta
    end

    三、一维信号的实验与结果

    %压缩感知重构算法测试
    clear all;close all;clc;
    M = 128; %观测值个数
    N = 256; %信号x的长度
    K = 30; %信号x的稀疏度
    Index_K = randperm(N);
    x = zeros(N,1);
    x(Index_K(1:K)) = 5*randn(K,1); %x为K稀疏的,且位置是随机的
    Psi = eye(N); %x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta
    Phi = randn(M,N)/sqrt(M); %测量矩阵为高斯矩阵
    A = Phi * Psi; %传感矩阵
    y = Phi * x; %得到观测向量y
    
    %% 恢复重构信号x
    tic
    theta = CS_SWOMP( y,A);
    x_r = Psi * theta; % x=Psi * theta
    toc
    
    %% 绘图
    figure;
    plot(x_r,'k.-'); %绘出x的恢复信号
    hold on;
    plot(x,'r'); %绘出原信号x
    hold off;
    legend('Recovery','Original')
    fprintf('
    恢复残差:');
    norm(x_r-x) %恢复残差

    四、门限参数a、测量数M与重构成功概率关系的实验与结果

    1、门限参数a分别为0.1-1.0时,不同稀疏信号下,测量值M与重构成功概率的关系:

    clear all;close all;clc;
    
    %% 参数配置初始化
    CNT = 1000; %对于每组(K,M,N),重复迭代次数
    N = 256; %信号x的长度
    Psi = eye(N); %x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta
    alpha_set = 0.1:0.1:1;
    K_set = [4,12,20,28,36]; %信号x的稀疏度集合
    Percentage = zeros(N,length(K_set),length(alpha_set)); %存储恢复成功概率
    
    %% 主循环,遍历每组(alpha,K,M,N)
    tic
    for tt = 1:length(alpha_set)
        alpha = alpha_set(tt);
        for kk = 1:length(K_set)
            K = K_set(kk); %本次稀疏度
            %M没必要全部遍历,每隔5测试一个就可以了
            M_set=2*K:5:N;
            PercentageK = zeros(1,length(M_set)); %存储此稀疏度K下不同M的恢复成功概率
            for mm = 1:length(M_set)
               M = M_set(mm); %本次观测值个数
               fprintf('alpha=%f,K=%d,M=%d
    ',alpha,K,M);
               P = 0;
               for cnt = 1:CNT  %每个观测值个数均运行CNT次
                    Index_K = randperm(N);
                    x = zeros(N,1);
                    x(Index_K(1:K)) = 5*randn(K,1); %x为K稀疏的,且位置是随机的                
                    Phi = randn(M,N)/sqrt(M); %测量矩阵为高斯矩阵
                    A = Phi * Psi; %传感矩阵
                    y = Phi * x; %得到观测向量y
                    theta = CS_SWOMP(y,A,10,alpha); %恢复重构信号theta
                    x_r = Psi * theta; % x=Psi * theta
                    if norm(x_r-x)<1e-6 %如果残差小于1e-6则认为恢复成功
                        P = P + 1;
                    end
               end
               PercentageK(mm) = P/CNT*100; %计算恢复概率
            end
            Percentage(1:length(M_set),kk,tt) = PercentageK;
        end
    end
    toc
    save SWOMPMtoPercentage1000 %运行一次不容易,把变量全部存储下来
    
    %% 绘图
    for tt = 1:length(alpha_set)
        S = ['-ks';'-ko';'-kd';'-kv';'-k*'];
        figure;
        for kk = 1:length(K_set)
            K = K_set(kk);
            M_set=2*K:5:N;
            L_Mset = length(M_set);
            plot(M_set,Percentage(1:L_Mset,kk,tt),S(kk,:));%绘出x的恢复信号
            hold on;
        end
        hold off;
        xlim([0 256]);
        legend('K=4','K=12','K=20','K=28','K=36');
        xlabel('Number of measurements(M)');
        ylabel('Percentage recovered');
        title(['Percentage of input signals recovered correctly(N=256,alpha=',...
            num2str(alpha_set(tt)),')(Gaussian)']);
    end
    for kk = 1:length(K_set)
        K = K_set(kk);
        M_set=2*K:5:N;
        L_Mset = length(M_set);
        S = ['-ks';'-ko';'-kd';'-k*';'-k+';'-kx';'-kv';'-k^';'-k<';'-k>'];
        figure;
        for tt = 1:length(alpha_set)
            plot(M_set,Percentage(1:L_Mset,kk,tt),S(tt,:));%绘出x的恢复信号
            hold on;
        end
        hold off;
        xlim([0 256]);
        legend('alpha=0.1','alpha=0.2','alpha=0.3','alpha=0.4','alpha=0.5',...
            'alpha=0.6','alpha=0.7','alpha=0.8','alpha=0.9','alpha=1.0');
        xlabel('Number of measurements(M)');
        ylabel('Percentage recovered');
        title(['Percentage of input signals recovered correctly(N=256,K=',...
            num2str(K),')(Gaussian)']);    
    end

      

      

    2、稀疏度为4,12,20,28,36时,不同门限参数a下,测量值M与重构成功概率的关系:

    clear all;close all;clc;
    load StOMPMtoPercentage1000;
    PercentageStOMP = Percentage;
    S = ['-ks';'-ko';'-kd';'-kv';'-k*'];
    figure;
    for kk = 1:length(K_set)
        K = K_set(kk);
        M_set=2*K:5:N;
        L_Mset = length(M_set);
        %ts_set = 2:0.2:3;第3个为2.4
        plot(M_set,Percentage(1:L_Mset,kk,3),S(kk,:));%绘出x的恢复信号
        hold on;
    end
    load SWOMPMtoPercentage1000;
    PercentageSWOMP = Percentage;
    S = ['-rs';'-ro';'-rd';'-rv';'-r*'];
    for kk = 1:length(K_set)
        K = K_set(kk);
        M_set=2*K:5:N;
        L_Mset = length(M_set);
        %alpha_set = 0.1:0.1:1;第6个为0.6
        plot(M_set,Percentage(1:L_Mset,kk,6),S(kk,:));%绘出x的恢复信号
        hold on;
    end
    hold off;
    xlim([0 256]);
    legend('StK=4','StK=12','StK=20','StK=28','StK=36',...
        'SWK=4','SWK=12','SWK=20','SWK=28','SWK=36');
    xlabel('Number of measurements(M)');
    ylabel('Percentage recovered');
    title(['Percentage of input signals recovered correctly(N=256,ts=2.4,alpha=0.5)(Gaussian)']);

     

       

    结论:

    通过对比可以看出,总体上讲a=0.6时效果较好。

    五、SWOMP与StOMP性能比较

    对比StOMP中ts=2.4与SWOMP中α=0.6的情况:StOMP要略好于SWOMP。

    六、参考文章

    http://blog.csdn.net/jbb0523/article/details/45441601

  • 相关阅读:
    PAIP: Paradigms of Artificial Intelligence Programming
    Common Lisp第三方库介绍 | (R "think-of-lisper" 'Albertlee)
    悲惨世界
    Lisp: Common Lisp, Racket, Clojure, Emacs Lisp
    Github上四种Lisp方言的流行度 | 肉山博客 (Wenshan's Blog)
    Nginx系列~负载均衡服务器与WWW服务器的实现
    Nginx系列~Nginx服务启动不了
    知方可补不足~数据库名称和数据库别名不同了怎么办
    WebApi系列~通过HttpClient来调用Web Api接口~续~实体参数的传递
    WebApi系列~通过HttpClient来调用Web Api接口
  • 原文地址:https://www.cnblogs.com/think90/p/11895544.html
Copyright © 2011-2022 走看看