zoukankan      html  css  js  c++  java
  • Harmonious Army

    Harmonious Army

    时间限制: 1 Sec  内存限制: 128 MB

    题目描述

    Now, Bob is playing an interesting game in which he is a general of a harmonious army. There are n soldiers in this army. Each soldier should be in one of the two occupations, Mage or Warrior. There are m pairs of soldiers having combination ability. There are three kinds of combination ability. If the two soldiers in a pair are both Warriors, the army power would be increased by a. If the two soldiers in a pair are both Mages, the army power would be increased by c. Otherwise the army power would be increased by b, and b=a/4+c/3, guaranteed that 4|a and 3|c. Your task is to output the maximum power Bob can increase by arranging the soldiers' occupations.

    Note that the symbol a|b means that a divides b, e.g. , 3|12 and 8|24.

    输入

    There are multiple test cases.
    Each case starts with a line containing two positive integers n(n≤500) and m(m≤104).
    In the following m lines, each line contains five positive integers u,v,a,b,c (1≤u,v≤n,u≠v,1≤a,c≤4×106,b=a/4+c/3), denoting soldiers u and v have combination ability, guaranteed that the pair (u,v) would not appear more than once.
    It is guaranteed that the sum of n in all test cases is no larger than 5×103, and the sum of m in all test cases is no larger than 5×104.

    输出

    For each test case, output one line containing the maximum power Bob can increase by arranging the soldiers' occupations.

    样例输入

    3 2
    1 2 8 3 3
    2 3 4 3 6
    

    样例输出

    12

    题意:给n个士兵安排两种职业,有m个关系,关系的贡献与该关系两边的士兵的职业有关,求最大贡献和。
    最小割建图好题,Mark一下。思路参考题解:

    对每个士兵建立一个点x ,点x 向源点s 连一条边,向汇点t 连一条边,分别表示选择两种职业,然后就可以先加上所有的贡献,通过两点关系用最小割建模,如下图所示。

    设一条边的三种贡献为A;B;C,可以得到以下方程:
    a+b=A+B(x,y都选Mage)

    c+d=C+B(x,y都选Warrior)

    a+d+e=A+C(x选Mage,y选Warrior)

    b+c+e=A+C(x选Warrior,y选Mage)

    可得一组解a=b=(A+B)/2,c=d=(C+B)/2,e=-B+(A+C)/2,然后将所有有关系的两点的图合并,用所有贡献减掉这个图的最小割即可。

    #include<bits/stdc++.h>
    #define N 505
    using namespace std;
    
    typedef struct
    {
        int to,next;
        long long flow;
    }ss;
    
    ss edg[N*N];
    int now_edge=0,s,t;
    int head[N];
    
    void addedge(int u,int v,long long flow)
    {
        edg[now_edge]=(ss){v,head[u],flow};
        head[u]=now_edge++;
    
        edg[now_edge]=(ss){u,head[v],0};
        head[v]=now_edge++;
    }
    
    int dis[N];
    
    bool bfs()
    {
        memset(dis,0,sizeof(dis));
        queue<int>q;
        q.push(s);
        dis[s]=1;
    
        while(!q.empty())
        {
            int now=q.front();
            q.pop();
            for(int i=head[now];i!=-1;i=edg[i].next)
            {
                ss &e=edg[i];
                if(e.flow>0&&dis[e.to]==0)
                {
                    dis[e.to]=dis[now]+1;
                    q.push(e.to);
                }
            }
        }
    
        if(dis[t]==0)return 0;
        return 1;
    }
    
    int current[N];
    long long dfs(int x,long long maxflow)
    {
        if(x==t)return maxflow;
    //    printf("%d %lld
    ",x,maxflow);
        for(int i=current[x];i!=-1;i=edg[i].next)
        {
            current[x]=i;
            ss &e=edg[i];
            if(e.flow>0&&dis[e.to]==dis[x]+1)
            {
                long long flow=dfs(e.to,min(maxflow,e.flow));
                if(flow!=0)
                {
                    e.flow-=flow;
                    edg[i^1].flow+=flow;
                    return flow;
                }
            }
        }
        return 0;
    }
    
    long long dinic()
    {
        long long ans=0,flow;
        while(bfs())
        {
            for(int i=0;i<N;i++)current[i]=head[i];
            while(flow=dfs(s,LLONG_MAX/2))ans+=flow;
        }
        return ans;
    }
    
    void init()
    {
        for(int i=0;i<N;i++)head[i]=-1;
        now_edge=0;
    }
    
    int Map[N][N];
    
    int main()
    {
        int n,m;
        while(scanf("%d %d",&n,&m)==2)
        {
            init();
            for(int i=0;i<=n+2;i++)
                for(int j=0;j<=n+2;j++)Map[i][j]=0;
    
            long long ans=0;
    
            s=n+1;
            t=s+1;
    
            while(m--)
            {
                int u,v,a,b,c;
                scanf("%d %d %d %d %d",&u,&v,&a,&b,&c);
                ans+=a+b+c;
                Map[s][u]+=a+b;
                Map[s][v]+=a+b;
                Map[u][t]+=c+b;
                Map[v][t]+=c+b;
                Map[u][v]+=a+c-2*b;
                Map[v][u]+=a+c-2*b;
            }
    
            for(int i=1;i<=n+2;i++)
                for(int j=1;j<=n+2;j++)if(Map[i][j])addedge(i,j,Map[i][j]);
    
            printf("%lld
    ",ans-dinic()/2);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    第二章 怎样培养好习惯
    十六、使用jQuery操作元素 —— DOM属性与HTML元素属性
    第六章 培养感恩的习惯
    js 问题集锦 之 二
    HTML 5 学习笔记之 常用标签简介
    MySql 笔记一 之 时间和日期函数
    HTML 5 学习笔记之 canvas 标签
    MySql 笔记三 循环语句
    转载文:架构经验系列文章
    MySql 笔记二 基础命令
  • 原文地址:https://www.cnblogs.com/tian-luo/p/11240796.html
Copyright © 2011-2022 走看看