zoukankan      html  css  js  c++  java
  • Heritage of skywalkert

    Heritage of skywalkert

    skywalkert, the new legend of Beihang University ACM-ICPC Team, retired this year leaving a group of newbies again.

    Rumor has it that he left a heritage when he left, and only the one who has at least 0.1% IQ(Intelligence Quotient) of his can obtain it.

    To prove you have at least 0.1% IQ of skywalkert, you have to solve the following problem:

    Given n positive integers, for all (i, j) where 1 ≤ i, j ≤ n and i ≠ j, output the maximum value among . means the Lowest Common Multiple.

    输入描述:

    The input starts with one line containing exactly one integer t which is the number of test cases. (1 ≤ t ≤ 50)

    For each test case, the first line contains four integers n, A, B, C. (2 ≤ n ≤ 107, A, B, C are randomly selected in unsigned 32 bits integer range)
     The n integers are obtained by calling the following function n times, the i-th result of which is ai, and we ensure all ai > 0. Please notice that for each test case x, y and z should be reset before being called.
    No more than 5 cases have n greater than 2 x 106.

    输出描述:

    For each test case, output "Case #x: y" in one line (without quotes), where x is the test case number (starting from 1) and y is the maximum lcm.

     

    输入

    2
    2 1 2 3
    5 3 4 8

    输出

    Case #1: 68516050958
    Case #2: 5751374352923604426

    题意:n个数求任意两个数的最大的最小公倍数。
    暴力模拟了一些数据发现答案的那两个数总是前15大的数,意思就是只有前15大的数才可能组合出答案。
    于是用优先队列维护前15大的数,要注意最好尽量减少pop的操作,以免超时。
    #include<bits/stdc++.h>
    using namespace std;
    unsigned int x,y,z;
    unsigned int f()
    {
        unsigned int t;
        x^=x<<16;
        x^=x>>5;
        x^=x<<1;
        t=x;
        x=y;
        y=z;
        z=t^x^y;
        return z;
    }
    
    priority_queue<unsigned long long,vector<unsigned long long>,greater<unsigned long long> >team;
    
    unsigned long long gcd(unsigned long long a,unsigned long long b)
    {
        if(a%b==0)return b;
        return gcd(b,a%b);
    }
    
    int tot=1;
    int main()
    {
        int t,n;
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d %u %u %u",&n,&x,&y,&z);
    
            for(int i=1; i<=n; i++)
            {
                unsigned long long now=f();
    
                if(team.size()>=13&&team.top()>=now)continue;
                team.push(now);
                if(team.size()>13)team.pop();
            }
    
            unsigned long long now[16];
            unsigned long long ans=1;
            int c1=0;
            while(!team.empty())
            {
                now[c1++]=team.top();
                team.pop();
            }
    
            for(int i=0; i<c1; i++)
                for(int j=0; j<c1; j++)
                    if(i!=j)ans=max(ans,now[i]/gcd(now[i],now[j])*now[j]);
    
            printf("Case #%d: %llu
    ",tot++,ans);
        }
        return 0;
    }
    View Code


  • 相关阅读:
    HTML基础
    Java基础05-计算机单位
    Java基础04-运算符
    Java基础03-数据类型
    Java基础02-变量
    Java基础01-HelloWorld
    MarkDown基本使用
    短视频学习
    c# as 总结
    在C#中使用Nullable类型和 tuple类
  • 原文地址:https://www.cnblogs.com/tian-luo/p/9419473.html
Copyright © 2011-2022 走看看