zoukankan      html  css  js  c++  java
  • matlab练习程序(奇异值分解压缩图像)

      介绍一下奇异值分解来压缩图像。今年的上半年中的一篇博客贴了一篇用奇异值分解处理pca问题的程序,当时用的是图像序列,是把图像序列中的不同部分分离开来。这里是用的不是图像序列了,只是单单的一幅图像,所以直接就对图像矩阵进行svd了。

      吴军的《数学之美》里其实已经介绍过用svd进行大数据的压缩了,不过我这里还是针对图像进行介绍一下吧。比如一幅1000*1000的图像A,存储就需要1000000个像素了。我们对A进行svd分解,则A=USV’,如果rank(A)=r,那么U就为1000*r的矩阵,S为r*r的矩阵,V为1000*r的矩阵。所以存储的数据就是1000*r+r*r+1000*r个数了,如果这个r比较小,那么存储的空间就会小很多了,当然了,如果r=1000,这时这样来算svd就是既浪费了空间又浪费了时间。所以用这个svd时,还是先看看它的秩为好。

      下面给出程序和运行结果,这里使用不同的特征分量对原图像进行重构,可以看一下效果。(这里悲剧的秩就是原图的宽)

    clear all;
    close all;
    clc;
    
    a=imread('lena.jpg');
    
    imshow(mat2gray(a))
    [m n]=size(a);
    a=double(a);
    r=rank(a);
    [s v d]=svd(a);
    
    %re=s*v*d';
    re=s(:,:)*v(:,1:1)*d(:,1:1)';
    figure;
    imshow(mat2gray(re));
    imwrite(mat2gray(re),'1.jpg')
    
    re=s(:,:)*v(:,1:20)*d(:,1:20)';
    figure;
    imshow(mat2gray(re));
    imwrite(mat2gray(re),'2.jpg')
    
    re=s(:,:)*v(:,1:80)*d(:,1:80)';
    figure;
    imshow(mat2gray(re));
    imwrite(mat2gray(re),'3.jpg')
    
    re=s(:,:)*v(:,1:150)*d(:,1:150)';
    figure;
    imshow(mat2gray(re));
    imwrite(mat2gray(re),'4.jpg')

    下面是效果图:

     lena原图

     只用第1个特征值进行重构

     用前10个特征值进行重构

     用前80个特征值进行重构

     用前150个特征值进行重构

    最后说一些奇异值分解的应用:

    1.图像压缩,正如上面的。

    2.噪声滤波。

    3.模式识别。因为svd就是提取主要的成分嘛。

    4.生物,物理,经济方面的一些统计模型的处理。

  • 相关阅读:
    Hystrix框架4--circuit
    Hystrix框架3--线程池
    undo tablespace RETENTION GUARANTEE
    Xshell访问虚拟机
    SQL Server nvarchar(max)
    win10 D盘空间占用太大(内容和标题可能不符,慎入)
    Grid Control安装和Deployment agent
    /etc/oratab
    Environment variable ORACLE_UNQNAME not defined.Please set ORACLE_UNQNAME to database unique name.
    Oracle的listener.ora、tnsnames.ora的配置
  • 原文地址:https://www.cnblogs.com/tiandsp/p/2737769.html
Copyright © 2011-2022 走看看