zoukankan      html  css  js  c++  java
  • POJ-2387-Til the Cows Come Home

    问题描述

    Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

    Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

    Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

    输入

    * Line 1: Two integers: T and N

    * Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

    输出

    * Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

    样例输入

    5 5
    1 2 20
    2 3 30
    3 4 20
    4 5 20
    1 5 100

    样例输出

    90

    dijkstra的模板
     1 #include <stdio.h>
     2 #include <string.h>
     3 #include <algorithm>
     4 using namespace std;
     5 const int N=1001;
     6 const int inf=1<<29;
     7 int n,m,u,v,c;
     8 int w[N][N],d[N];
     9 bool vis[N];
    10 void dij()
    11 {
    12     for(int i=1; i<=n; i++)
    13     {
    14         d[i]=inf;
    15     }
    16     d[1]=0;
    17     for(int i=0; i<n; i++)
    18     {
    19         int now=inf;
    20         int x;
    21         for(int j=1; j<=n; j++)
    22         {
    23             if(!vis[j]&&now>d[j])
    24             {
    25                 now=d[j];
    26                 x=j;
    27             }
    28         }
    29         vis[x]=1;
    30         for(int j=1; j<=n; j++)
    31         {
    32             if(!vis[j]&&d[j]>d[x]+w[x][j])
    33             {
    34                 d[j]=d[x]+w[x][j];
    35             }
    36         }
    37     }
    38 }
    39 int main()
    40 {
    41     while(scanf("%d%d",&m,&n)!=EOF)
    42     {
    43         memset(vis,0,sizeof(vis));
    44         for(int i=1; i<=n; i++)
    45         {
    46             for(int j=1; j<=n; j++)
    47             {
    48                 w[i][j]=inf;
    49             }
    50         }
    51         for(int i=1; i<=m; i++)
    52         {
    53             scanf("%d%d%d",&u,&v,&c);
    54             if(c<w[u][v])
    55                 w[u][v]=w[v][u]=c;
    56         }
    57         dij();
    58         printf("%d
    ",d[n]);
    59     }
    60     return 0;
    61 }
  • 相关阅读:
    BUAA OO 2019 第三单元作业总结
    OpenJML入门
    BUAA OO 2019 第二单元作业总结
    BUAA OO 2019 第一单元作业总结
    Spring MVC原理
    Spring AOP原理
    Spring DI原理
    Spring IOC原理分析
    观察者模式
    装饰模式
  • 原文地址:https://www.cnblogs.com/tianmin123/p/4783931.html
Copyright © 2011-2022 走看看