zoukankan      html  css  js  c++  java
  • 地图投影【百度百科】

    地图投影是利用一定数学方法则把地球表面的经、纬线转换到平面上的理论和方法。由于地球是一个赤道略宽两极略扁的不规则的梨形球体,故其表面是一个不可展平的曲面,所以运用任何数学方法进行这种转换都会产生误差和变形,为按照不同的需求缩小误差,就产生了各种投影方法。

    定义

    地图投影,Map Projection.把地球表面的任意点,利用一定数学法则,转换到地图平面上的理论和方法。
    地图投影

    地图投影

    书面概念化定义:地图投影就是指建立地球表面(或其他星球表面或天球面)上的点与投影平面(即地图平面)上点之间的一一对应关系的方法。即建立之间的数学转换公式。它将作为一个不可展平的曲面即地球表面投影到一个平面的基本方法,保证了空间信息在区域上的联系与完整。这个投影过程将产生投影变形,而且不同的投影方法具有不同性质和大小的投影变形。
    由于球面上任何一点的位置是用地理坐标(λ,φ)表示的,而平面上的点的位置是用直角坐标(χ,у)或极坐标(r,)表示的,所以要想将地球表面上的点转移到平面上,必须采用一定的方法来确定地理坐标与平面直角坐标或极坐标之间的关系。这种在球面和平面之间建立点与点之间函数关系的数学方法,就是地图投影方法。地图投影变形球面转化成平面的必然结果,没有变形的投影是不存在的。对某一地图投影来讲,不存在这种变形,就必然存在另一种或两种变形。但制图时可做到:在有些投影图上没有角度或面积变形;在有些投影图上沿某一方向无长度变形。
    地球椭球体表面是个曲面,而地图通常是二维平面,因此在地图制图时首先要考虑把曲面转化成平面。然而,从几何意义上来说,球面是不可展平的曲面。要把它展成平面,势必会产生破裂褶皱。这种不连续的、破裂的平面是不适合制作地图的,所以必须采用特殊的方法来实现球面到平面的转化。
    球面上任何一点的位置取决于它的经纬度,所以实际投影时首先将一些经纬线交点展绘在平面上,并把经度相同的点连接而成为经线,纬度相同的点连接而成为纬线,构成经纬网。然后将球面上的点按其经纬度转绘在平面上相应的位置。由此可见,地图投影就是研究将地球椭球体面上的经纬线网按照一定的数学法则转移到平面上的方法及其变形问题。其数学公式表达为:
    地球

    地球

    χ=f1(λ,φ)y=f2(λ,φ)(2-1)
    根据地图投影的一般公式,只要知道地面点的经纬度(λ,φ),便可以在投影平面上找到相对应的平面位置(χ,у),这样就可按一定的制图需要,将一定间隔的经纬网交点的平面直角坐标计算出来,并展绘成经纬网,构成地图的“骨架”。经纬网是制作地图的“基础”,是地图的主要数学要素。

    2原理

    由于投影的变形,地图上所表示的地物,如大陆岛屿海洋等的几何特性(长度、面积、角度、形状)也随之发生变形。每一幅地图都有不同程度的变形;在同一幅图上,不同地区的变形情况也不相同。地图上表示的范围越大,离投影标准经纬线或投影中心的距离越长,地图反映的变形也越大。因此,大范围的小比例尺地图只能供了解地表现象的分布概况使用,而不能用于精确的量测和计算
    地图投影

    地图投影

    地图投影的实质就是将地球椭球面上的地理坐标转化为平面直角坐标。用某种投影条件将投影球面上的地理坐标点一一投影到平面坐标系内,以构成某种地图投影。
    起因

    由于地球是一个赤道略宽两极略扁的不规则的梨形球体,故其表面是一个不可展平的曲面,所以运用任何数学方法进行这种转换都会产生误差和变形,为按照不同的需求缩小误差,就产生了各种投影方法。按变形性质,地图投影可分为三类:等角投影、等(面)积投影和任意投影

  • 相关阅读:
    python的thread模块作用
    Python2、3解释器inpurt()函数的区别
    python中的单例设计模式
    Python2、3解释器中字符串中的区别
    浏览器向服务器发送请求的请求头解析
    Python中输出函数print()的三个参数
    Python中四种交换两个变量的值的方法
    学习爬虫看着篇(基础篇)
    Python读写txt文件时的编码问题
    网页和自然语言处理中的字符问题(半角和全角)
  • 原文地址:https://www.cnblogs.com/tianya84/p/5224249.html
Copyright © 2011-2022 走看看