zoukankan      html  css  js  c++  java
  • 深入探析 socket

      最近浏览了几篇有关Socket发送消息的文章,发现大家对Socket Send方法理解有所偏差,现将自己在开发过程中对Socket的领悟写出来,以供大家参考。

      (一)架构

      基于TCP协议的Socket通信,架构类似于B/S架构,一个Socket通信服务器,多个Socket通信客户端。Socket通信服务器启动时,会建立一个侦听Socket,侦听Socket将侦听到的Socket连接传给接受Socket,然后由接受Socket完成接受、发送消息,当Socket存在异常时,断开连接。在实际开发项目中,往往要求Socket通信服务器能提供高效、稳定的服务,一般会用到以下技术:双工通信、完成端口、SAEA、池、多线程、异步等。特别是池,用的比较多,池一般包括一下几种:

    1)Buffer池,用于集中管控Socket缓冲区,防止内存碎片。

    2)SAEA池,用于集中管控Socket,重复利用Socket。

    3)SQL池,用于分离网络服务层与数据访问层(SQL的执行效率远远低于网络层执行效率)。

    4)线程池,用于从线程池中调用空闲线程执行业务逻辑,进一步提高网络层运行效率。


      (二)Send

      主服务器接受Socket为一端口,客户端Socket为一端口,这两个端口通过TCP协议建立连接,通信基础系统负责管理此连接,它有两个功能:            

      1)发送消息            

      2)接受消息

      Socket的Send方法,并非大家想象中的从一个端口发送消息到另一个端口,它仅仅是拷贝数据到基础系统的发送缓冲区,然后由基础系统将发送缓冲区的数据到连接的另一端口。值得一说的是,这里的拷贝数据与异步发送消息的拷贝是不一样的,同步发送的拷贝,是直接拷贝数据到基础系统缓冲区,拷贝完成后返回,在拷贝的过程中,执行线程会IO等待, 此种拷贝与Socket自带的Buffer空间无关,但异步发送消息的拷贝,是将Socket自带的Buffer空间内的所有数据,拷贝到基础系统发送缓冲区,并立即返回,执行线程无需IO等待,所以异步发送在发送前必须执行SetBuffer方法,拷贝完成后,会触发你自定义回调函数ProcessSend,在ProcessSend方法中,调用SetBuffer方法,重新初始化Buffer空间。

      口说无凭,下面给个例子:

      服务器端:

    客户端:

    解释:

    客户端第一次发送数据:1234567890。

    客户端第一个接受数据:1234567890,该数据由服务端用Send同步方法发送返回。

    客户端第二个接受数据:1234567890,该数据由服务端用Send异步方法发送返回。

    以上似乎没什么异常,好,接下来,我只发送abc。

    客户端第一个接受数据:abc,理所当然,没什么问题。

    客户端第二个接受数据:abc4567890!为什么呢?应该是abc才对呀!

    好,现在为大家解释一下:

    异步发送是将其Buffer空间中所有数据拷贝到基础系统发送缓冲区,第一次拷贝1234567890到发送缓冲区,所以收到1234567890,第二次拷贝abc到发送缓冲区,替换了先前的123,所以收到abc4567890,大家明白的?

    源码:

    BufferManager
    using System.Collections.Generic;
    using System.Net.Sockets;

    // This class creates a single large buffer which can be divided up
    // and assigned to SocketAsyncEventArgs objects for use with each
    // socket I/O operation.
    // This enables bufffers to be easily reused and guards against
    // fragmenting heap memory.
    //
    // The operations exposed on the BufferManager class are not thread safe.
    class BufferManager
    {
    int m_numBytes; // the total number of bytes controlled by the buffer pool
    byte[] m_buffer; // the underlying byte array maintained by the Buffer Manager
    Stack<int> m_freeIndexPool; //
    int m_currentIndex;
    int m_bufferSize;

    public BufferManager(int totalBytes, int bufferSize)
    {
    m_numBytes
    = totalBytes;
    m_currentIndex
    =0;
    m_bufferSize
    = bufferSize;
    m_freeIndexPool
    =new Stack<int>();
    }

    // Allocates buffer space used by the buffer pool
    publicvoid InitBuffer()
    {
    // create one big large buffer and divide that
    // out to each SocketAsyncEventArg object
    m_buffer =newbyte[m_numBytes];
    }

    // Assigns a buffer from the buffer pool to the
    // specified SocketAsyncEventArgs object
    //
    // <returns>true if the buffer was successfully set, else false</returns>
    publicbool SetBuffer(SocketAsyncEventArgs args)
    {

    if (m_freeIndexPool.Count >0)
    {
    args.SetBuffer(m_buffer, m_freeIndexPool.Pop(), m_bufferSize);
    }
    else
    {
    if ((m_numBytes - m_bufferSize) < m_currentIndex)
    {
    returnfalse;
    }
    args.SetBuffer(m_buffer, m_currentIndex, m_bufferSize);
    m_currentIndex
    += m_bufferSize;
    }
    returntrue;
    }

    // Removes the buffer from a SocketAsyncEventArg object.
    // This frees the buffer back to the buffer pool
    publicvoid FreeBuffer(SocketAsyncEventArgs args)
    {
    m_freeIndexPool.Push(args.Offset);
    args.SetBuffer(
    null, 0, 0);
    }

    }
    SocketAsyncEventArgsPool
    using System;
    using System.Collections.Generic;
    using System.Net.Sockets;

    // Represents a collection of reusable SocketAsyncEventArgs objects.
    class SocketAsyncEventArgsPool
    {
    Stack
    <SocketAsyncEventArgs> m_pool;

    // Initializes the object pool to the specified size
    //
    // The "capacity" parameter is the maximum number of
    // SocketAsyncEventArgs objects the pool can hold
    public SocketAsyncEventArgsPool(int capacity)
    {
    m_pool
    =new Stack<SocketAsyncEventArgs>(capacity);
    }

    // Add a SocketAsyncEventArg instance to the pool
    //
    //The "item" parameter is the SocketAsyncEventArgs instance
    // to add to the pool
    publicvoid Push(SocketAsyncEventArgs item)
    {
    if (item ==null) { thrownew ArgumentNullException("Items added to a SocketAsyncEventArgsPool cannot be null"); }
    lock (m_pool)
    {
    m_pool.Push(item);
    }
    }

    // Removes a SocketAsyncEventArgs instance from the pool
    // and returns the object removed from the pool
    public SocketAsyncEventArgs Pop()
    {
    lock (m_pool)
    {
    return m_pool.Pop();
    }
    }

    // The number of SocketAsyncEventArgs instances in the pool
    publicint Count
    {
    get { return m_pool.Count; }
    }

    }
    using System;
    using System.Collections.Generic;
    using System.Linq;
    using System.Text;
    using System.Net.Sockets;

    class AsyncUserToken
    {
    public Socket Socket;
    }
    Server
    using System;
    using System.Threading;
    using System.Net.Sockets;
    using System.Net;
    using System.Text;

    // Implements the connection logic for the socket server.
    // After accepting a connection, all data read from the client
    // is sent back to the client. The read and echo back to the client pattern
    // is continued until the client disconnects.
    class Server
    {
    privateint m_numConnections; // the maximum number of connections the sample is designed to handle simultaneously
    privateint m_receiveBufferSize;// buffer size to use for each socket I/O operation
    BufferManager m_bufferManager; // represents a large reusable set of buffers for all socket operations
    constint opsToPreAlloc =2; // read, write (don't alloc buffer space for accepts)
    Socket listenSocket; // the socket used to listen for incoming connection requests
    // pool of reusable SocketAsyncEventArgs objects for write, read and accept socket operations
    SocketAsyncEventArgsPool m_readWritePool;
    int m_totalBytesRead; // counter of the total # bytes received by the server
    int m_numConnectedSockets; // the total number of clients connected to the server
    Semaphore m_maxNumberAcceptedClients;

    // Create an uninitialized server instance.
    // To start the server listening for connection requests
    // call the Init method followed by Start method
    //
    // <param name="numConnections">the maximum number of connections the sample is designed to handle simultaneously</param>
    // <param name="receiveBufferSize">buffer size to use for each socket I/O operation</param>
    public Server(int numConnections, int receiveBufferSize)
    {
    m_totalBytesRead
    =0;
    m_numConnectedSockets
    =0;
    m_numConnections
    = numConnections;
    m_receiveBufferSize
    = receiveBufferSize;
    // allocate buffers such that the maximum number of sockets can have one outstanding read and
    //write posted to the socket simultaneously
    m_bufferManager =new BufferManager(receiveBufferSize * numConnections * opsToPreAlloc,
    receiveBufferSize);

    m_readWritePool
    =new SocketAsyncEventArgsPool(numConnections);
    m_maxNumberAcceptedClients
    =new Semaphore(numConnections, numConnections);
    }

    // Initializes the server by preallocating reusable buffers and
    // context objects. These objects do not need to be preallocated
    // or reused, but it is done this way to illustrate how the API can
    // easily be used to create reusable objects to increase server performance.
    //
    publicvoid Init()
    {
    // Allocates one large byte buffer which all I/O operations use a piece of. This gaurds
    // against memory fragmentation
    m_bufferManager.InitBuffer();

    // preallocate pool of SocketAsyncEventArgs objects
    SocketAsyncEventArgs readWriteEventArg;

    for (int i =0; i < m_numConnections; i++)
    {
    //Pre-allocate a set of reusable SocketAsyncEventArgs
    readWriteEventArg =new SocketAsyncEventArgs();
    readWriteEventArg.Completed
    +=new EventHandler<SocketAsyncEventArgs>(IO_Completed);
    readWriteEventArg.UserToken
    =new AsyncUserToken();

    // assign a byte buffer from the buffer pool to the SocketAsyncEventArg object
    m_bufferManager.SetBuffer(readWriteEventArg);

    // add SocketAsyncEventArg to the pool
    m_readWritePool.Push(readWriteEventArg);
    }

    }

    // Starts the server such that it is listening for
    // incoming connection requests.
    //
    // <param name="localEndPoint">The endpoint which the server will listening
    // for connection requests on</param>
    publicvoid Start(IPEndPoint localEndPoint)
    {
    // create the socket which listens for incoming connections
    listenSocket =new Socket(localEndPoint.AddressFamily, SocketType.Stream, ProtocolType.Tcp);
    listenSocket.Bind(localEndPoint);
    // start the server with a listen backlog of 100 connections
    listenSocket.Listen(100);

    // post accepts on the listening socket
    StartAccept(null);

    //Console.WriteLine("{0} connected sockets with one outstanding receive posted to each....press any key", m_outstandingReadCount);
    Console.WriteLine("Press any key to terminate the server process....");
    Console.ReadKey();
    }


    // Begins an operation to accept a connection request from the client
    //
    // <param name="acceptEventArg">The context object to use when issuing
    // the accept operation on the server's listening socket</param>
    publicvoid StartAccept(SocketAsyncEventArgs acceptEventArg)
    {
    if (acceptEventArg ==null)
    {
    acceptEventArg
    =new SocketAsyncEventArgs();
    acceptEventArg.Completed
    +=new EventHandler<SocketAsyncEventArgs>(AcceptEventArg_Completed);
    }
    else
    {
    // socket must be cleared since the context object is being reused
    acceptEventArg.AcceptSocket =null;
    }

    m_maxNumberAcceptedClients.WaitOne();
    bool willRaiseEvent = listenSocket.AcceptAsync(acceptEventArg);
    if (!willRaiseEvent)
    {
    ProcessAccept(acceptEventArg);
    }
    }

    // This method is the callback method associated with Socket.AcceptAsync
    // operations and is invoked when an accept operation is complete
    //
    void AcceptEventArg_Completed(object sender, SocketAsyncEventArgs e)
    {
    ProcessAccept(e);
    }

    privatevoid ProcessAccept(SocketAsyncEventArgs e)
    {
    Interlocked.Increment(
    ref m_numConnectedSockets);
    Console.WriteLine(
    "Client connection accepted. There are {0} clients connected to the server",
    m_numConnectedSockets);

    // Get the socket for the accepted client connection and put it into the
    //ReadEventArg object user token
    SocketAsyncEventArgs readEventArgs = m_readWritePool.Pop();
    ((AsyncUserToken)readEventArgs.UserToken).Socket
    = e.AcceptSocket;

    // As soon as the client is connected, post a receive to the connection
    bool willRaiseEvent = e.AcceptSocket.ReceiveAsync(readEventArgs);
    if (!willRaiseEvent)
    {
    ProcessReceive(readEventArgs);
    }

    // Accept the next connection request
    StartAccept(e);
    }

    // This method is called whenever a receive or send operation is completed on a socket
    //
    // <param name="e">SocketAsyncEventArg associated with the completed receive operation</param>
    void IO_Completed(object sender, SocketAsyncEventArgs e)
    {
    // determine which type of operation just completed and call the associated handler
    switch (e.LastOperation)
    {
    case SocketAsyncOperation.Receive:
    ProcessReceive(e);
    break;
    case SocketAsyncOperation.Send:
    ProcessSend(e);
    break;
    default:
    thrownew ArgumentException("The last operation completed on the socket was not a receive or send");
    }

    }

    // This method is invoked when an asynchronous receive operation completes.
    // If the remote host closed the connection, then the socket is closed.
    // If data was received then the data is echoed back to the client.
    //
    privatevoid ProcessReceive(SocketAsyncEventArgs e)
    {
    // check if the remote host closed the connection
    AsyncUserToken token = (AsyncUserToken)e.UserToken;
    if (e.BytesTransferred >0&& e.SocketError == SocketError.Success)
    {
    //increment the count of the total bytes receive by the server
    Interlocked.Add(ref m_totalBytesRead, e.BytesTransferred);
    Console.WriteLine(
    "The server has read a total of {0} bytes", m_totalBytesRead);


    Int32 BytesToProcess
    = e.BytesTransferred;
    Byte[] bt
    =new Byte[BytesToProcess];
    Buffer.BlockCopy(e.Buffer, e.Offset, bt,
    0, BytesToProcess);
    string strReceive = Encoding.Default.GetString(bt);


    Send(token.Socket, bt,
    0, bt.Length, 1000);


    Thread.Sleep(
    1000);

    //echo the data received back to the client
    //e.SetBuffer(e.Offset, e.BytesTransferred);
    bool willRaiseEvent = token.Socket.SendAsync(e);
    if (!willRaiseEvent)
    {
    ProcessSend(e);
    }

    }
    else
    {
    CloseClientSocket(e);
    }
    }


    publicstaticvoid Send(Socket socket, byte[] buffer, int offset, int size, int timeout)
    {
    socket.SendTimeout
    =0;
    int startTickCount = Environment.TickCount;
    int sent =0; // how many bytes is already sent
    do
    {
    if (Environment.TickCount > startTickCount + timeout)
    //throw new Exception("Timeout.");
    try
    {
    sent
    += socket.Send(buffer, offset + sent, size - sent, SocketFlags.None);
    }
    catch (SocketException ex)
    {
    if (ex.SocketErrorCode == SocketError.WouldBlock ||
    ex.SocketErrorCode
    == SocketError.IOPending ||
    ex.SocketErrorCode
    == SocketError.NoBufferSpaceAvailable)
    {
    // socket buffer is probably full, wait and try again
    Thread.Sleep(30);
    }
    else
    throw ex; // any serious error occurr
    }
    }
    while (sent < size);
    }



    // This method is invoked when an asynchronous send operation completes.
    // The method issues another receive on the socket to read any additional
    // data sent from the client
    //
    // <param name="e"></param>
    privatevoid ProcessSend(SocketAsyncEventArgs e)
    {
    if (e.SocketError == SocketError.Success)
    {
    //e.SetBuffer(e.Offset, 10);

    // done echoing data back to the client
    AsyncUserToken token = (AsyncUserToken)e.UserToken;
    // read the next block of data send from the client
    bool willRaiseEvent = token.Socket.ReceiveAsync(e);
    if (!willRaiseEvent)
    {
    ProcessReceive(e);
    }
    }
    else
    {
    CloseClientSocket(e);
    }
    }

    privatevoid CloseClientSocket(SocketAsyncEventArgs e)
    {
    AsyncUserToken token
    = e.UserToken as AsyncUserToken;

    // close the socket associated with the client
    try
    {
    token.Socket.Shutdown(SocketShutdown.Send);
    }
    // throws if client process has already closed
    catch (Exception) { }
    token.Socket.Close();

    // decrement the counter keeping track of the total number of clients connected to the server
    Interlocked.Decrement(ref m_numConnectedSockets);
    m_maxNumberAcceptedClients.Release();
    Console.WriteLine(
    "A client has been disconnected from the server. There are {0} clients connected to the server", m_numConnectedSockets);

    // Free the SocketAsyncEventArg so they can be reused by another client
    m_readWritePool.Push(e);
    }

    }
    Program
    using System;
    using System.Net;
    using System.Collections.Generic;
    using System.IO;

    class Program
    {
    staticvoid Main(string[] args)
    {
    IPEndPoint iep
    =new IPEndPoint(IPAddress.Parse("10.1.20.6"), 1333);

    Server objServer
    =new Server(1000, 10);
    objServer.Init();
    objServer.Start(iep);
    }
    }
  • 相关阅读:
    单片机开发 郭天祥
    OpenNI检测不到Kinect Camera和Kinect Audio了
    python中的类的成员变量以及property函数
    python lambda
    python中的括号以及元组和列表的区别
    python的self
    python exception的传递
    python的闭包
    函数里面定义函数
    在yum出问题的情况下安装某个rpm包的方法
  • 原文地址:https://www.cnblogs.com/tianzhiliang/p/1821623.html
Copyright © 2011-2022 走看看