zoukankan      html  css  js  c++  java
  • 深圳scala-meetup-20180902(2)- Future vs Task and ReaderMonad依赖注入

      在对上一次3月份的scala-meetup里我曾分享了关于Future在函数组合中的问题及如何用Monix.Task来替代。具体分析可以查阅这篇博文。在上篇示范里我们使用了Future来实现某种non-blocking数据库操作,现在可以用Task替换Future部分:

      class KVStore[K,V] {
        private val kvs = new ConcurrentHashMap[K,V]()
        def create(k: K, v: V): Task[Unit] = Task.delay(kvs.putIfAbsent(k,v))
        def read(k: K): Task[Option[V]] = Task.delay(Option(kvs.get(k)))
        def update(k: K, v: V): Task[Unit] = Task.delay(kvs.put(k,v))
        def delete(k: K): Task[Boolean] = Task.delay(kvs.remove(k) != null)
      }

    Task是一个真正的Monad,我们可以放心的用来实现函数组合:

      type FoodName = String
      type Quantity = Int
      type FoodStore = KVStore[String,Int]
    
      def addFood(food: FoodName, qty: Quantity)(implicit fs: FoodStore): Task[Quantity] = for {
        current <- fs.read(food)
        newQty = current.map(cq => cq + qty).getOrElse(qty)
        _ <- fs.update(food,newQty)
      } yield newQty
    
      def takeFood(food: FoodName, qty: Quantity)(implicit fs: FoodStore): Task[Quantity] = for {
        current <- fs.read(food)
        cq = current.getOrElse(0)
        taken = Math.min(cq,qty)
        left = cq - taken
        _ <- if(left > 0) fs.update(food,left) else fs.delete(food)
      } yield taken
    
    
      def cookSauce(qty: Quantity)(get: (FoodName,Quantity) => Task[Quantity],
                                   put: (FoodName,Quantity) => Task[Quantity]): Task[Quantity] = for {
        tomato <- get("Tomato",qty)
        vaggies <- get("Veggies",qty)
        _ <- get("Galic",10)
        sauceQ = tomato/2 + vaggies * 3 / 2
        _ <- put("Sauce",sauceQ)
      } yield sauceQ
    
      def cookPasta(qty: Quantity)(get: (FoodName,Quantity) => Task[Quantity],
                                   put: (FoodName,Quantity) => Task[Quantity]): Task[Quantity] = for {
        pasta <- get("Pasta", qty)
        sauce <- get("Sauce", qty)
        _ <- get("Spice", 3)
        portions = Math.min(pasta, sauce)
        _ <- put("Meal", portions)
      } yield portions

    跟上次我们使用Future时的方式没有两样。值得研究的是如何获取Task运算结果,及如何更精确的控制Task运算如取消运行中的Task:

      implicit val refridge = new FoodStore
    
      val shopping: Task[Unit] = for {
        _ <- addFood("Tomato",10)
        _ <- addFood("Veggies",15)
        _ <- addFood("Garlic", 42)
        _ <- addFood("Spice", 100)
        _ <- addFood("Pasta", 6)
      } yield()
    
      val cooking: Task[Quantity] = for {
        _ <- shopping
        sauce <- cookSauce(10)(takeFood(_,_),addFood(_,_))
        meals <- cookPasta(10)(takeFood(_,_),addFood(_,_))
      } yield meals
    
     import scala.util._
      import monix.execution.Scheduler.Implicits.global
    
      val cancellableCooking = Cooking.runOnComplete { result =>
        result match {
          case Success(meals) => println(s"we have $meals pasta meals for the day.")
          case Failure(err) => println(s"cooking trouble: ${err.getMessage}")
        }
      }
    
      global.scheduleOnce(1 second) {
        println(s"its taking too long, cancelling cooking ...")
        cancellableCooking.cancel()
      }

    在上面例子里的addFood,takeFood函数中都有个fs:FoodStore参数。这样做可以使函数更加通用,可以对用不同方式实施的FoodStore进行操作。这里FoodStore就是函数的依赖,我们是通过函数参数来传递这个依赖的。重新组织一下代码使这种关系更明显:

      class Refridge {
        def addFood(food: FoodName, qty: Quantity): FoodStore => Task[Quantity] = { foodStore =>
          for {
            current <- foodStore.read(food)
            newQty = current.map(c => c + qty).getOrElse(qty)
            _ <- foodStore.update(food, newQty)
          } yield newQty
        }
    
        def takeFood(food: FoodName, qty: Quantity): FoodStore => Task[Quantity] = { foodStore =>
          for {
            current <- foodStore.read(food)
            cq = current.getOrElse(0)
            taken = Math.min(cq, qty)
            left = cq - taken
            _ <- if (left > 0) foodStore.update(food, left) else foodStore.delete(food)
          } yield taken
        }
    
      }

    现在我们用一个函数类型的结果来代表依赖注入。这样做的好处是简化了函数主体,彻底把依赖与函数进行了分割,使用函数时不必考虑依赖。

    scala的函数式组件库cats提供了一个Kleisli类型,reader monad就是从它推导出来的:

     final case class Kleisli[M[_], A, B](run: A => M[B]) { self =>
     ...
     trait KleisliFunctions {
       /**Construct a Kleisli from a Function1 */
       def kleisli[M[_], A, B](f: A => M[B]): Kleisli[M, A, B] = Kleisli(f)
     …
      def >=>[C](k: Kleisli[M, B, C])(implicit b: Bind[M]): Kleisli[M, A, C] =  
              kleisli((a: A) => b.bind(this(a))(k.run))
     …
     Kleisli的用途就是进行函数的转换
     // (A=>M[B]) >=> (B=>M[C]) >=> (C=>M[D]) = M[D]

    实际上Kleisli就是ReaderT:

     type ReaderT[F[_], E, A] = Kleisli[F, E, A]
     val ReaderT = Kleisli
     val reader = ReaderT[F,B,A](A => F[B]) 
     val readerTask = ReaderT[Task,B,A](A => Task[B])
     val injection = ReaderT { foodStore => Task.delay { foodStore.takeFood } }
     val food = injection.run(db) // run(kvs), run(dbConfig) …

    这段代码里我们也针对上面的例子示范了ReaderT的用法。现在我们可以把例子改成下面这样:

      type FoodName = String
      type Quantity = Int
      type FoodStore = KVStore[String,Int]
    
      class Refridge {
        def addFood(food: FoodName, qty: Quantity): ReaderT[Task,FoodStore,Quantity] = ReaderT{ foodStore =>
          for {
            current <- foodStore.read(food)
            newQty = current.map(c => c + qty).getOrElse(qty)
            _ <- foodStore.update(food, newQty)
          } yield newQty
        }
    
        def takeFood(food: FoodName, qty: Quantity): ReaderT[Task,FoodStore,Quantity] = ReaderT{ foodStore =>
          for {
            current <- foodStore.read(food)
            cq = current.getOrElse(0)
            taken = Math.min(cq, qty)
            left = cq - taken
            _ <- if (left > 0) foodStore.update(food, left) else foodStore.delete(food)
          } yield taken
        }
    
      }

    ReaderT[F[_],E,A]就是ReaderT[Task,FoodStore,Quantity]. FoodStore是注入的依赖,ReaderT.run返回Task:

      val cooking: ReaderT[Task,FoodStore,Quantity] = for {
        _ <- shopping
        sauce <- cooker.cookSauce(10)
        pasta <- cooker.cookPasta(10)
      } yield pasta
    
      import scala.concurrent.duration._
      import scala.util._
      import monix.execution.Scheduler.Implicits.global
      val timedCooking = cooking.run(foodStore).timeoutTo(1 seconds, Task.raiseError( new RuntimeException(
        "oh no, take too long to cook ...")))
      val cancellableCooking = timedCooking.runOnComplete { result =>
        result match {
          case Success(meals) => println(s"we have $meals specials for the day.")
          case Failure(exception) => println(s"kitchen problem! ${exception.getMessage}")
        }
      }
      global.scheduleOnce(3 seconds) {
        println("3 seconds passed,cancelling ...")
        cancellableCooking.cancel()
      }

    我们知道cooking是个ReaderT,用run(foodStore)来注入依赖foodStore。那么如果我们还有一个kvStore或者jdbcDB,mongoDB可以直接用run(kvStore), run(jdbcDB), run(mongoDB) ... 返回的结果都是Task。

  • 相关阅读:
    菜鸟学自动化测试(三)—-selenium 命令
    菜鸟学自动化测试(二)—-selenium IDE 功能扩展
    用js实现自动打字动画效果
    hihoCoder #1015 : KMP算法
    hihoCoder #1014 : Trie树
    android相对布局中@id和@+id的区别(原理)
    android中动态给EditText获得焦点并弹起软键盘的方法详解
    网页版井字游戏(TicTacToe)人机对战的制作(附思路和源码)
    网页版番茄时钟的制作——Pomodoro Clock
    制作网页版简易计算器(Calculator)
  • 原文地址:https://www.cnblogs.com/tiger-xc/p/9685036.html
Copyright © 2011-2022 走看看