zoukankan      html  css  js  c++  java
  • ZOJ3872 Beauty of Array【DP】

    Beauty of Array

    Time Limit: 2 Seconds      Memory Limit: 65536 KB

    Edward has an array A with N integers. He defines the beauty of an array as the summation of all distinct integers in the array. Now Edward wants to know the summation of the beauty of all contiguous subarray of the array A.

    Input

    There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

    The first line contains an integer N (1 <= N <= 100000), which indicates the size of the array. The next line contains N positive integers separated by spaces. Every integer is no larger than 1000000.

    Output

    For each case, print the answer in one line.

    Sample Input

    3
    5
    1 2 3 4 5
    3
    2 3 3
    4
    2 3 3 2
    

    Sample Output

    105
    21
    38
    

    Author: LIN, Xi
    Source: The 12th Zhejiang Provincial Collegiate Programming Contest


    问题链接ZOJ3872 Beauty of Array

    问题简述:参见上文。

    题意有点难懂。

    给定n个数的序列,求n个数的各个子序列不重复元素和的和。

    例如3个元素的序列2,3,3,各个子序列就是{2},{2,3},{2,3,3},{3},{3,3},{3}。各个子序列中去掉重复元素后求和,总和就是2+(2+3)+(2+3)+3+3+3=21。

    问题分析:这个题需要用动态规划来解。递推函数dp[i]=(i-pos[ai])*ai,其中pos[ai]=i即上一次ai出现的位置。

    程序说明:(略)

    题记:(略)


    AC的C++语言程序如下:

    /* ZOJ3872 Beauty of Array */
    
    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    
    const int N = 1000000;
    long long pos[N+1];
    
    using namespace std;
    
    int main()
    {
        int t, n, a;
        scanf("%d", &t);
        while(t--) {
            memset(pos, 0, sizeof(pos));
    
            scanf("%d", &n);
            long long sum = 0, dp = 0;
            for(int i=1; i<=n; i++) {
                scanf("%d", &a);
                dp += (i - pos[a]) * a;
                sum += dp;
                pos[a] = i;
            }
    
            printf("%lld
    ", sum);
        }
    
        return 0;
    }



  • 相关阅读:
    Django 的中文教程
    VisualStudio code插件集锦(持续更新)
    Django3最新版本安装配置
    python 中的 *args 和 **kwargs
    拉格朗日乘子法
    softmax中的margin控制
    softmax中的smooth程度控制
    从boosting角度理解softmax
    从 smooth&最优化 角度理解softmax
    寻找 函数max(x, y) 的平滑解
  • 原文地址:https://www.cnblogs.com/tigerisland/p/7563621.html
Copyright © 2011-2022 走看看