Bull Math
时间限制: 1000ms 内存限制: 65535KB
通过次数: 1总提交次数: 1
问题描述
Bulls are so much better at math than the cows. They can multiply huge integers together and get perfectly precise answers ... or so they say. Farmer John wonders if their answers are correct. Help him check the bulls' answers. Read
in two positive integers (no more than 40 digits each) and compute their product. Output it as a normal number (with no extra leading zeros).
FJ asks that you do this yourself; don't use a special library function for the multiplication.
FJ asks that you do this yourself; don't use a special library function for the multiplication.
输入描述
* Lines 1..2: Each line contains a single decimal number.
输出描述
* Line 1: The exact product of the two input lines
样例输入
11111111111111 1111111111
样例输出
12345679011110987654321
来源
USACO 2004 November Gold
问题分析:(略)
这个问题和《POJ2389 Bull Math【大数】》是同一个问题,代码拿过来用就AC了。
程序说明:参见参考链接。
AC的C++程序如下:
/* POJ2389 Bull Math */ #include <iostream> #include <string> #include <sstream> #include <cstdlib> #define MAX 100 // for strings using namespace std; class BigInteger { private: string number; bool sign; public: BigInteger(); // empty constructor initializes zero BigInteger(string s); // "string" constructor BigInteger(string s, bool sin); // "string" constructor BigInteger(int n); // "int" constructor void setNumber(string s); const string& getNumber(); // retrieves the number void setSign(bool s); const bool& getSign(); BigInteger absolute(); // returns the absolute value void operator = (BigInteger b); bool operator == (BigInteger b); bool operator != (BigInteger b); bool operator > (BigInteger b); bool operator < (BigInteger b); bool operator >= (BigInteger b); bool operator <= (BigInteger b); BigInteger& operator ++(); // prefix BigInteger operator ++(int); // postfix BigInteger& operator --(); // prefix BigInteger operator --(int); // postfix BigInteger operator + (BigInteger b); BigInteger operator - (BigInteger b); BigInteger operator * (BigInteger b); BigInteger operator / (BigInteger b); BigInteger operator % (BigInteger b); BigInteger& operator += (BigInteger b); BigInteger& operator -= (BigInteger b); BigInteger& operator *= (BigInteger b); BigInteger& operator /= (BigInteger b); BigInteger& operator %= (BigInteger b); BigInteger& operator [] (int n); BigInteger operator -(); // unary minus sign operator string(); // for conversion from BigInteger to string private: bool equals(BigInteger n1, BigInteger n2); bool less(BigInteger n1, BigInteger n2); bool greater(BigInteger n1, BigInteger n2); string add(string number1, string number2); string subtract(string number1, string number2); string multiply(string n1, string n2); pair<string, long long> divide(string n, long long den); string toString(long long n); long long toInt(string s); }; //------------------------------------------------------------------------------ BigInteger::BigInteger() { // empty constructor initializes zero number = "0"; sign = false; } BigInteger::BigInteger(string s) { // "string" constructor if( isdigit(s[0]) ) { // if not signed setNumber(s); sign = false; // +ve } else { setNumber( s.substr(1) ); sign = (s[0] == '-'); } } BigInteger::BigInteger(string s, bool sin) { // "string" constructor setNumber( s ); setSign( sin ); } BigInteger::BigInteger(int n) { // "int" constructor stringstream ss; string s; ss << n; ss >> s; if( isdigit(s[0]) ) { // if not signed setNumber( s ); setSign( false ); // +ve } else { setNumber( s.substr(1) ); setSign( s[0] == '-' ); } } void BigInteger::setNumber(string s) { number = s; } const string& BigInteger::getNumber() { // retrieves the number return number; } void BigInteger::setSign(bool s) { sign = s; } const bool& BigInteger::getSign() { return sign; } BigInteger BigInteger::absolute() { return BigInteger( getNumber() ); // +ve by default } void BigInteger::operator = (BigInteger b) { setNumber( b.getNumber() ); setSign( b.getSign() ); } bool BigInteger::operator == (BigInteger b) { return equals((*this) , b); } bool BigInteger::operator != (BigInteger b) { return ! equals((*this) , b); } bool BigInteger::operator > (BigInteger b) { return greater((*this) , b); } bool BigInteger::operator < (BigInteger b) { return less((*this) , b); } bool BigInteger::operator >= (BigInteger b) { return equals((*this) , b) || greater((*this), b); } bool BigInteger::operator <= (BigInteger b) { return equals((*this) , b) || less((*this) , b); } BigInteger& BigInteger::operator ++() { // prefix (*this) = (*this) + 1; return (*this); } BigInteger BigInteger::operator ++(int) { // postfix BigInteger before = (*this); (*this) = (*this) + 1; return before; } BigInteger& BigInteger::operator --() { // prefix (*this) = (*this) - 1; return (*this); } BigInteger BigInteger::operator --(int) { // postfix BigInteger before = (*this); (*this) = (*this) - 1; return before; } BigInteger BigInteger::operator + (BigInteger b) { BigInteger addition; if( getSign() == b.getSign() ) { // both +ve or -ve addition.setNumber( add(getNumber(), b.getNumber() ) ); addition.setSign( getSign() ); } else { // sign different if( absolute() > b.absolute() ) { addition.setNumber( subtract(getNumber(), b.getNumber() ) ); addition.setSign( getSign() ); } else { addition.setNumber( subtract(b.getNumber(), getNumber() ) ); addition.setSign( b.getSign() ); } } if(addition.getNumber() == "0") // avoid (-0) problem addition.setSign(false); return addition; } BigInteger BigInteger::operator - (BigInteger b) { b.setSign( ! b.getSign() ); // x - y = x + (-y) return (*this) + b; } BigInteger BigInteger::operator * (BigInteger b) { BigInteger mul; mul.setNumber( multiply(getNumber(), b.getNumber() ) ); mul.setSign( getSign() != b.getSign() ); if(mul.getNumber() == "0") // avoid (-0) problem mul.setSign(false); return mul; } // Warning: Denomerator must be within "long long" size not "BigInteger" BigInteger BigInteger::operator / (BigInteger b) { long long den = toInt( b.getNumber() ); BigInteger div; div.setNumber( divide(getNumber(), den).first ); div.setSign( getSign() != b.getSign() ); if(div.getNumber() == "0") // avoid (-0) problem div.setSign(false); return div; } // Warning: Denomerator must be within "long long" size not "BigInteger" BigInteger BigInteger::operator % (BigInteger b) { long long den = toInt( b.getNumber() ); BigInteger rem; long long rem_int = divide(number, den).second; rem.setNumber( toString(rem_int) ); rem.setSign( getSign() != b.getSign() ); if(rem.getNumber() == "0") // avoid (-0) problem rem.setSign(false); return rem; } BigInteger& BigInteger::operator += (BigInteger b) { (*this) = (*this) + b; return (*this); } BigInteger& BigInteger::operator -= (BigInteger b) { (*this) = (*this) - b; return (*this); } BigInteger& BigInteger::operator *= (BigInteger b) { (*this) = (*this) * b; return (*this); } BigInteger& BigInteger::operator /= (BigInteger b) { (*this) = (*this) / b; return (*this); } BigInteger& BigInteger::operator %= (BigInteger b) { (*this) = (*this) % b; return (*this); } BigInteger& BigInteger::operator [] (int n) { return *(this + (n*sizeof(BigInteger))); } BigInteger BigInteger::operator -() { // unary minus sign return (*this) * -1; } BigInteger::operator string() { // for conversion from BigInteger to string string signedString = ( getSign() ) ? "-" : ""; // if +ve, don't print + sign signedString += number; return signedString; } bool BigInteger::equals(BigInteger n1, BigInteger n2) { return n1.getNumber() == n2.getNumber() && n1.getSign() == n2.getSign(); } bool BigInteger::less(BigInteger n1, BigInteger n2) { bool sign1 = n1.getSign(); bool sign2 = n2.getSign(); if(sign1 && ! sign2) // if n1 is -ve and n2 is +ve return true; else if(! sign1 && sign2) return false; else if(! sign1) { // both +ve if(n1.getNumber().length() < n2.getNumber().length() ) return true; if(n1.getNumber().length() > n2.getNumber().length() ) return false; return n1.getNumber() < n2.getNumber(); } else { // both -ve if(n1.getNumber().length() > n2.getNumber().length()) return true; if(n1.getNumber().length() < n2.getNumber().length()) return false; return n1.getNumber().compare( n2.getNumber() ) > 0; // greater with -ve sign is LESS } } bool BigInteger::greater(BigInteger n1, BigInteger n2) { return ! equals(n1, n2) && ! less(n1, n2); } string BigInteger::add(string number1, string number2) { string add = (number1.length() > number2.length()) ? number1 : number2; char carry = '0'; int differenceInLength = abs( (int) (number1.size() - number2.size()) ); if(number1.size() > number2.size()) number2.insert(0, differenceInLength, '0'); // put zeros from left else// if(number1.size() < number2.size()) number1.insert(0, differenceInLength, '0'); for(int i=number1.size()-1; i>=0; --i) { add[i] = ((carry-'0')+(number1[i]-'0')+(number2[i]-'0')) + '0'; if(i != 0) { if(add[i] > '9') { add[i] -= 10; carry = '1'; } else carry = '0'; } } if(add[0] > '9') { add[0]-= 10; add.insert(0,1,'1'); } return add; } string BigInteger::subtract(string number1, string number2) { string sub = (number1.length()>number2.length())? number1 : number2; int differenceInLength = abs( (int)(number1.size() - number2.size()) ); if(number1.size() > number2.size()) number2.insert(0, differenceInLength, '0'); else number1.insert(0, differenceInLength, '0'); for(int i=number1.length()-1; i>=0; --i) { if(number1[i] < number2[i]) { number1[i] += 10; number1[i-1]--; } sub[i] = ((number1[i]-'0')-(number2[i]-'0')) + '0'; } while(sub[0]=='0' && sub.length()!=1) // erase leading zeros sub.erase(0,1); return sub; } string BigInteger::multiply(string n1, string n2) { if(n1.length() > n2.length()) n1.swap(n2); string res = "0"; for(int i=n1.length()-1; i>=0; --i) { string temp = n2; int currentDigit = n1[i]-'0'; int carry = 0; for(int j=temp.length()-1; j>=0; --j) { temp[j] = ((temp[j]-'0') * currentDigit) + carry; if(temp[j] > 9) { carry = (temp[j]/10); temp[j] -= (carry*10); } else carry = 0; temp[j] += '0'; // back to string mood } if(carry > 0) temp.insert(0, 1, (carry+'0')); temp.append((n1.length()-i-1), '0'); // as like mult by 10, 100, 1000, 10000 and so on res = add(res, temp); // O(n) } while(res[0] == '0' && res.length()!=1) // erase leading zeros res.erase(0,1); return res; } pair<string, long long> BigInteger::divide(string n, long long den) { long long rem = 0; string result; result.resize(MAX); for(int indx=0, len = n.length(); indx<len; ++indx) { rem = (rem * 10) + (n[indx] - '0'); result[indx] = rem / den + '0'; rem %= den; } result.resize( n.length() ); while( result[0] == '0' && result.length() != 1) result.erase(0,1); if(result.length() == 0) result = "0"; return make_pair(result, rem); } string BigInteger::toString(long long n) { stringstream ss; string temp; ss << n; ss >> temp; return temp; } long long BigInteger::toInt(string s) { long long sum = 0; for(int i=0; i<(int)s.length(); i++) sum = (sum*10) + (s[i] - '0'); return sum; } int main() { string a, b; BigInteger bia, bib, bic; while(cin >> a >> b) { bia.setNumber(a); bib.setNumber(b); bic = bia * bib; cout << bic.getNumber() << endl; } return 0; }