Problem 118
Using all of the digits 1 through 9 and concatenating them freely to form decimal integers, different sets can be formed. Interestingly with the set {2,5,47,89,631}, all of the elements belonging to it are prime.
How many distinct sets containing each of the digits one through nine exactly once contain only prime elements?
C++:
#include <iostream> #include <algorithm> #include <cmath> using namespace std; const int N = 9; int val[] = {1, 2, 3, 4, 5, 6, 7, 8, 9}; long ans; bool isprime(long n) { if(n == 1) return false; if(n == 2) return true; if(n % 2 == 0) return false; long end = sqrt(n); for(long i=3; i<=end; i+=2) if(n % i == 0) return false; return true; } void primeset(int pos, long long leftval) { if(pos >= N) { ans++; return; } long long value = 0; while(pos < N) { value *= 10; value += val[pos++]; if(isprime(value) && value >= leftval) primeset(pos, value); } } int main() { ans = 0; for(;;) { primeset(0, 0); if(!next_permutation(val, val + N)) break; } cout << ans << endl; return 0; }