Problem 104
The Fibonacci sequence is defined by the recurrence relation:
Fn = Fn−1 + Fn−2, where F1 = 1 and F2 = 1.
It turns out that F541, which contains 113 digits, is the first Fibonacci number for which the last nine digits are 1-9 pandigital (contain all the digits 1 to 9, but not necessarily in order). And F2749, which contains 575 digits, is the first Fibonacci number for which the first nine digits are 1-9 pandigital.
Given that Fk is the first Fibonacci number for which the first nine digits AND the last nine digits are 1-9 pandigital, findk.
C++:
#include <iostream> #include <cstdio> using namespace std; typedef unsigned long long ULL; const ULL ulmax = ~((ULL)0); const ULL ulmax10 = ulmax / 10; const ULL N = 1000000000; bool ispandigital(ULL n) { int digits = 0b1111111110; while (n) { digits ^= 1 << (n % 10); n /= 10; } return !digits; } int main() { ULL f1l=1, f2l=1, nextleft; ULL f1r=1, f2r=1, nextright; int k = 2; for(;;) { k++; nextright = (f1r + f2r) % N; f1r = f2r; f2r = nextright; nextleft = f1l + f2l; if(nextleft >= ulmax10) { nextleft /= 10; f2l /= 10; } f1l = f2l; f2l = nextleft; while(nextleft > N) nextleft /= 10; if(ispandigital(nextleft) && ispandigital(nextright)) { cout << k << endl; break; } } return 0; }
C++:
#include <iostream> #include <cstring> #include <cmath> using namespace std; const long N = 1000000000; const double r5 = sqrt(5.0); const double lgr = log10((1.0 + r5) / 2.0); const double lr5 = log10(r5); bool ispandigital(long v) { int digits[10], d; memset(digits, 0, sizeof(digits)); while(v) { d = v % 10; if(digits[d]) return false; digits[d] = 1; v /= 10; } if(digits[0]) return false; for(int i=1; i<10; i++) if(digits[i] == 0) return false; return true; } bool ispandigital2(long n) { int digits = 0b1111111110; while (n) { digits ^= 1 << (n % 10); n /= 10; } return !digits; } int main() { long f1=1, f2=1, next, k=2; for(;;) { k++; next = (f1 + f2) % N; if(ispandigital2(next)) { double d = (double)k * lgr - lr5; long t = (long)pow(10.0, 8.0 + d - floor(d)); if(ispandigital2(t)) { cout << k << endl; break; } } f1 = f2; f2 = next; } return 0; }
参考链接:Project Euler problem 104。