zoukankan      html  css  js  c++  java
  • http协议之cookie标准RFC6265介绍

     
    [Docs] [txt|pdf] [draft-ietf-httpst...] [Diff1] [Diff2] [Errata]

    PROPOSED STANDARD
    Errata Exist
    Internet Engineering Task Force (IETF)                          A. Barth
    Request for Comments: 6265                                 U.C. Berkeley
    Obsoletes: 2965                                               April 2011
    Category: Standards Track
    ISSN: 2070-1721
    
    
                        

    HTTP State Management Mechanism

    
    
    Abstract
    
       This document defines the HTTP Cookie and Set-Cookie header fields.
       These header fields can be used by HTTP servers to store state
       (called cookies) at HTTP user agents, letting the servers maintain a
       stateful session over the mostly stateless HTTP protocol.  Although
       cookies have many historical infelicities that degrade their security
       and privacy, the Cookie and Set-Cookie header fields are widely used
       on the Internet.  This document obsoletes RFC 2965.
    
    Status of This Memo
    
       This is an Internet Standards Track document.
    
       This document is a product of the Internet Engineering Task Force
       (IETF).  It represents the consensus of the IETF community.  It has
       received public review and has been approved for publication by the
       Internet Engineering Steering Group (IESG).  Further information on
       Internet Standards is available in Section 2 of RFC 5741.
    
       Information about the current status of this document, any errata,
       and how to provide feedback on it may be obtained at
       http://www.rfc-editor.org/info/rfc6265.
    
    Copyright Notice
    
       Copyright (c) 2011 IETF Trust and the persons identified as the
       document authors.  All rights reserved.
    
       This document is subject to BCP 78 and the IETF Trust's Legal
       Provisions Relating to IETF Documents
       (http://trustee.ietf.org/license-info) in effect on the date of
       publication of this document.  Please review these documents
       carefully, as they describe your rights and restrictions with respect
       to this document.  Code Components extracted from this document must
       include Simplified BSD License text as described in Section 4.e of
       the Trust Legal Provisions and are provided without warranty as
       described in the Simplified BSD License.
    
    
    
    
    Barth                        Standards Track                    [Page 1]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
       This document may contain material from IETF Documents or IETF
       Contributions published or made publicly available before November
       10, 2008.  The person(s) controlling the copyright in some of this
       material may not have granted the IETF Trust the right to allow
       modifications of such material outside the IETF Standards Process.
       Without obtaining an adequate license from the person(s) controlling
       the copyright in such materials, this document may not be modified
       outside the IETF Standards Process, and derivative works of it may
       not be created outside the IETF Standards Process, except to format
       it for publication as an RFC or to translate it into languages other
       than English.
    
    Table of Contents
    
       1. Introduction ....................................................3
       2. Conventions .....................................................4
          2.1. Conformance Criteria .......................................4
          2.2. Syntax Notation ............................................5
          2.3. Terminology ................................................5
       3. Overview ........................................................6
          3.1. Examples ...................................................6
       4. Server Requirements .............................................8
          4.1. Set-Cookie .................................................8
               4.1.1. Syntax ..............................................8
               4.1.2. Semantics (Non-Normative) ..........................10
          4.2. Cookie ....................................................13
               4.2.1. Syntax .............................................13
               4.2.2. Semantics ..........................................13
       5. User Agent Requirements ........................................14
          5.1. Subcomponent Algorithms ...................................14
               5.1.1. Dates ..............................................14
               5.1.2. Canonicalized Host Names ...........................16
               5.1.3. Domain Matching ....................................16
               5.1.4. Paths and Path-Match ...............................16
          5.2. The Set-Cookie Header .....................................17
               5.2.1. The Expires Attribute ..............................19
               5.2.2. The Max-Age Attribute ..............................20
               5.2.3. The Domain Attribute ...............................20
               5.2.4. The Path Attribute .................................21
               5.2.5. The Secure Attribute ...............................21
               5.2.6. The HttpOnly Attribute .............................21
          5.3. Storage Model .............................................21
          5.4. The Cookie Header .........................................25
       6. Implementation Considerations ..................................27
          6.1. Limits ....................................................27
          6.2. Application Programming Interfaces ........................27
          6.3. IDNA Dependency and Migration .............................27
       7. Privacy Considerations .........................................28
    
    
    
    Barth                        Standards Track                    [Page 2]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
          7.1. Third-Party Cookies .......................................28
          7.2. User Controls .............................................28
          7.3. Expiration Dates ..........................................29
       8. Security Considerations ........................................29
          8.1. Overview ..................................................29
          8.2. Ambient Authority .........................................30
          8.3. Clear Text ................................................30
          8.4. Session Identifiers .......................................31
          8.5. Weak Confidentiality ......................................32
          8.6. Weak Integrity ............................................32
          8.7. Reliance on DNS ...........................................33
       9. IANA Considerations ............................................33
          9.1. Cookie ....................................................34
          9.2. Set-Cookie ................................................34
          9.3. Cookie2 ...................................................34
          9.4. Set-Cookie2 ...............................................34
       10. References ....................................................35
          10.1. Normative References .....................................35
          10.2. Informative References ...................................35
       Appendix A. Acknowledgements ......................................37
    
    

    1. Introduction

    
    
       This document defines the HTTP Cookie and Set-Cookie header fields.
       Using the Set-Cookie header field, an HTTP server can pass name/value
       pairs and associated metadata (called cookies) to a user agent.  When
       the user agent makes subsequent requests to the server, the user
       agent uses the metadata and other information to determine whether to
       return the name/value pairs in the Cookie header.
    
       Although simple on their surface, cookies have a number of
       complexities.  For example, the server indicates a scope for each
       cookie when sending it to the user agent.  The scope indicates the
       maximum amount of time in which the user agent should return the
       cookie, the servers to which the user agent should return the cookie,
       and the URI schemes for which the cookie is applicable.
    
       For historical reasons, cookies contain a number of security and
       privacy infelicities.  For example, a server can indicate that a
       given cookie is intended for "secure" connections, but the Secure
       attribute does not provide integrity in the presence of an active
       network attacker.  Similarly, cookies for a given host are shared
       across all the ports on that host, even though the usual "same-origin
       policy" used by web browsers isolates content retrieved via different
       ports.
    
       There are two audiences for this specification: developers of cookie-
       generating servers and developers of cookie-consuming user agents.
    
    
    
    Barth                        Standards Track                    [Page 3]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
       To maximize interoperability with user agents, servers SHOULD limit
       themselves to the well-behaved profile defined in Section 4 when
       generating cookies.
    
       User agents MUST implement the more liberal processing rules defined
       in Section 5, in order to maximize interoperability with existing
       servers that do not conform to the well-behaved profile defined in
       Section 4.
    
       This document specifies the syntax and semantics of these headers as
       they are actually used on the Internet.  In particular, this document
       does not create new syntax or semantics beyond those in use today.
       The recommendations for cookie generation provided in Section 4
       represent a preferred subset of current server behavior, and even the
       more liberal cookie processing algorithm provided in Section 5 does
       not recommend all of the syntactic and semantic variations in use
       today.  Where some existing software differs from the recommended
       protocol in significant ways, the document contains a note explaining
       the difference.
    
       Prior to this document, there were at least three descriptions of
       cookies: the so-called "Netscape cookie specification" [Netscape],
       RFC 2109 [RFC2109], and RFC 2965 [RFC2965].  However, none of these
       documents describe how the Cookie and Set-Cookie headers are actually
       used on the Internet (see [Kri2001] for historical context).  In
       relation to previous IETF specifications of HTTP state management
       mechanisms, this document requests the following actions:
    
       1.  Change the status of [RFC2109] to Historic (it has already been
           obsoleted by [RFC2965]).
    
       2.  Change the status of [RFC2965] to Historic.
    
       3.  Indicate that [RFC2965] has been obsoleted by this document.
    
       In particular, in moving RFC 2965 to Historic and obsoleting it, this
       document deprecates the use of the Cookie2 and Set-Cookie2 header
       fields.
    
    

    2. Conventions

    2.1. Conformance Criteria

    
    
       The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
       "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
       document are to be interpreted as described in [RFC2119].
    
    
    
    
    
    Barth                        Standards Track                    [Page 4]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
       Requirements phrased in the imperative as part of algorithms (such as
       "strip any leading space characters" or "return false and abort these
       steps") are to be interpreted with the meaning of the key word
       ("MUST", "SHOULD", "MAY", etc.) used in introducing the algorithm.
    
       Conformance requirements phrased as algorithms or specific steps can
       be implemented in any manner, so long as the end result is
       equivalent.  In particular, the algorithms defined in this
       specification are intended to be easy to understand and are not
       intended to be performant.
    
    

    2.2. Syntax Notation

    
    
       This specification uses the Augmented Backus-Naur Form (ABNF)
       notation of [RFC5234].
    
       The following core rules are included by reference, as defined in
       [RFC5234], Appendix B.1: ALPHA (letters), CR (carriage return), CRLF
       (CR LF), CTLs (controls), DIGIT (decimal 0-9), DQUOTE (double quote),
       HEXDIG (hexadecimal 0-9/A-F/a-f), LF (line feed), NUL (null octet),
       OCTET (any 8-bit sequence of data except NUL), SP (space), HTAB
       (horizontal tab), CHAR (any [USASCII] character), VCHAR (any visible
       [USASCII] character), and WSP (whitespace).
    
       The OWS (optional whitespace) rule is used where zero or more linear
       whitespace characters MAY appear:
    
       OWS            = *( [ obs-fold ] WSP )
                        ; "optional" whitespace
       obs-fold       = CRLF
    
       OWS SHOULD either not be produced or be produced as a single SP
       character.
    
    

    2.3. Terminology

    
    
       The terms user agent, client, server, proxy, and origin server have
       the same meaning as in the HTTP/1.1 specification ([RFC2616], Section
       1.3).
    
       The request-host is the name of the host, as known by the user agent,
       to which the user agent is sending an HTTP request or from which it
       is receiving an HTTP response (i.e., the name of the host to which it
       sent the corresponding HTTP request).
    
       The term request-uri is defined in Section 5.1.2 of [RFC2616].
    
    
    
    
    
    Barth                        Standards Track                    [Page 5]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
       Two sequences of octets are said to case-insensitively match each
       other if and only if they are equivalent under the i;ascii-casemap
       collation defined in [RFC4790].
    
       The term string means a sequence of non-NUL octets.
    
    

    3. Overview

    
    
       This section outlines a way for an origin server to send state
       information to a user agent and for the user agent to return the
       state information to the origin server.
    
       To store state, the origin server includes a Set-Cookie header in an
       HTTP response.  In subsequent requests, the user agent returns a
       Cookie request header to the origin server.  The Cookie header
       contains cookies the user agent received in previous Set-Cookie
       headers.  The origin server is free to ignore the Cookie header or
       use its contents for an application-defined purpose.
    
       Origin servers MAY send a Set-Cookie response header with any
       response.  User agents MAY ignore Set-Cookie headers contained in
       responses with 100-level status codes but MUST process Set-Cookie
       headers contained in other responses (including responses with 400-
       and 500-level status codes).  An origin server can include multiple
       Set-Cookie header fields in a single response.  The presence of a
       Cookie or a Set-Cookie header field does not preclude HTTP caches
       from storing and reusing a response.
    
       Origin servers SHOULD NOT fold multiple Set-Cookie header fields into
       a single header field.  The usual mechanism for folding HTTP headers
       fields (i.e., as defined in [RFC2616]) might change the semantics of
       the Set-Cookie header field because the %x2C (",") character is used
       by Set-Cookie in a way that conflicts with such folding.
    
    

    3.1. Examples

    
    
       Using the Set-Cookie header, a server can send the user agent a short
       string in an HTTP response that the user agent will return in future
       HTTP requests that are within the scope of the cookie.  For example,
       the server can send the user agent a "session identifier" named SID
       with the value 31d4d96e407aad42.  The user agent then returns the
       session identifier in subsequent requests.
    
    
    
    
    
    
    
    
    
    Barth                        Standards Track                    [Page 6]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
       == Server -> User Agent ==
    
       Set-Cookie: SID=31d4d96e407aad42
    
       == User Agent -> Server ==
    
       Cookie: SID=31d4d96e407aad42
    
       The server can alter the default scope of the cookie using the Path
       and Domain attributes.  For example, the server can instruct the user
       agent to return the cookie to every path and every subdomain of
       example.com.
    
       == Server -> User Agent ==
    
       Set-Cookie: SID=31d4d96e407aad42; Path=/; Domain=example.com
    
       == User Agent -> Server ==
    
       Cookie: SID=31d4d96e407aad42
    
       As shown in the next example, the server can store multiple cookies
       at the user agent.  For example, the server can store a session
       identifier as well as the user's preferred language by returning two
       Set-Cookie header fields.  Notice that the server uses the Secure and
       HttpOnly attributes to provide additional security protections for
       the more sensitive session identifier (see Section 4.1.2.)
    
       == Server -> User Agent ==
    
       Set-Cookie: SID=31d4d96e407aad42; Path=/; Secure; HttpOnly
       Set-Cookie: lang=en-US; Path=/; Domain=example.com
    
       == User Agent -> Server ==
    
       Cookie: SID=31d4d96e407aad42; lang=en-US
    
       Notice that the Cookie header above contains two cookies, one named
       SID and one named lang.  If the server wishes the user agent to
       persist the cookie over multiple "sessions" (e.g., user agent
       restarts), the server can specify an expiration date in the Expires
       attribute.  Note that the user agent might delete the cookie before
       the expiration date if the user agent's cookie store exceeds its
       quota or if the user manually deletes the server's cookie.
    
    
    
    
    
    
    
    Barth                        Standards Track                    [Page 7]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
       == Server -> User Agent ==
    
       Set-Cookie: lang=en-US; Expires=Wed, 09 Jun 2021 10:18:14 GMT
    
       == User Agent -> Server ==
    
       Cookie: SID=31d4d96e407aad42; lang=en-US
    
       Finally, to remove a cookie, the server returns a Set-Cookie header
       with an expiration date in the past.  The server will be successful
       in removing the cookie only if the Path and the Domain attribute in
       the Set-Cookie header match the values used when the cookie was
       created.
    
       == Server -> User Agent ==
    
       Set-Cookie: lang=; Expires=Sun, 06 Nov 1994 08:49:37 GMT
    
       == User Agent -> Server ==
    
       Cookie: SID=31d4d96e407aad42
    
    

    4. Server Requirements

    
    
       This section describes the syntax and semantics of a well-behaved
       profile of the Cookie and Set-Cookie headers.
    
    

    4.1. Set-Cookie

    
    
       The Set-Cookie HTTP response header is used to send cookies from the
       server to the user agent.
    
    

    4.1.1. Syntax

    
    
       Informally, the Set-Cookie response header contains the header name
       "Set-Cookie" followed by a ":" and a cookie.  Each cookie begins with
       a name-value-pair, followed by zero or more attribute-value pairs.
       Servers SHOULD NOT send Set-Cookie headers that fail to conform to
       the following grammar:
    
    
    
    
    
    
    
    
    
    
    
    
    Barth                        Standards Track                    [Page 8]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
     set-cookie-header = "Set-Cookie:" SP set-cookie-string
     set-cookie-string = cookie-pair *( ";" SP cookie-av )
     cookie-pair       = cookie-name "=" cookie-value
     cookie-name       = token
     cookie-value      = *cookie-octet / ( DQUOTE *cookie-octet DQUOTE )
     cookie-octet      = %x21 / %x23-2B / %x2D-3A / %x3C-5B / %x5D-7E
                           ; US-ASCII characters excluding CTLs,
                           ; whitespace DQUOTE, comma, semicolon,
                           ; and backslash
     token             = <token, defined in [RFC2616], Section 2.2>
    
     cookie-av         = expires-av / max-age-av / domain-av /
                         path-av / secure-av / httponly-av /
                         extension-av
     expires-av        = "Expires=" sane-cookie-date
     sane-cookie-date  = <rfc1123-date, defined in [RFC2616], Section 3.3.1>
     max-age-av        = "Max-Age=" non-zero-digit *DIGIT
                           ; In practice, both expires-av and max-age-av
                           ; are limited to dates representable by the
                           ; user agent.
     non-zero-digit    = %x31-39
                           ; digits 1 through 9
     domain-av         = "Domain=" domain-value
     domain-value      = <subdomain>
                           ; defined in [RFC1034], Section 3.5, as
                           ; enhanced by [RFC1123], Section 2.1
     path-av           = "Path=" path-value
     path-value        = <any CHAR except CTLs or ";">
     secure-av         = "Secure"
     httponly-av       = "HttpOnly"
     extension-av      = <any CHAR except CTLs or ";">
    
       Note that some of the grammatical terms above reference documents
       that use different grammatical notations than this document (which
       uses ABNF from [RFC5234]).
    
       The semantics of the cookie-value are not defined by this document.
    
       To maximize compatibility with user agents, servers that wish to
       store arbitrary data in a cookie-value SHOULD encode that data, for
       example, using Base64 [RFC4648].
    
       The portions of the set-cookie-string produced by the cookie-av term
       are known as attributes.  To maximize compatibility with user agents,
       servers SHOULD NOT produce two attributes with the same name in the
       same set-cookie-string.  (See Section 5.3 for how user agents handle
       this case.)
    
    
    
    
    Barth                        Standards Track                    [Page 9]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
       Servers SHOULD NOT include more than one Set-Cookie header field in
       the same response with the same cookie-name.  (See Section 5.2 for
       how user agents handle this case.)
    
       If a server sends multiple responses containing Set-Cookie headers
       concurrently to the user agent (e.g., when communicating with the
       user agent over multiple sockets), these responses create a "race
       condition" that can lead to unpredictable behavior.
    
       NOTE: Some existing user agents differ in their interpretation of
       two-digit years.  To avoid compatibility issues, servers SHOULD use
       the rfc1123-date format, which requires a four-digit year.
    
       NOTE: Some user agents store and process dates in cookies as 32-bit
       UNIX time_t values.  Implementation bugs in the libraries supporting
       time_t processing on some systems might cause such user agents to
       process dates after the year 2038 incorrectly.
    
    

    4.1.2. Semantics (Non-Normative)

    
    
       This section describes simplified semantics of the Set-Cookie header.
       These semantics are detailed enough to be useful for understanding
       the most common uses of cookies by servers.  The full semantics are
       described in Section 5.
    
       When the user agent receives a Set-Cookie header, the user agent
       stores the cookie together with its attributes.  Subsequently, when
       the user agent makes an HTTP request, the user agent includes the
       applicable, non-expired cookies in the Cookie header.
    
       If the user agent receives a new cookie with the same cookie-name,
       domain-value, and path-value as a cookie that it has already stored,
       the existing cookie is evicted and replaced with the new cookie.
       Notice that servers can delete cookies by sending the user agent a
       new cookie with an Expires attribute with a value in the past.
    
       Unless the cookie's attributes indicate otherwise, the cookie is
       returned only to the origin server (and not, for example, to any
       subdomains), and it expires at the end of the current session (as
       defined by the user agent).  User agents ignore unrecognized cookie
       attributes (but not the entire cookie).
    
    
    
    
    
    
    
    
    
    
    Barth                        Standards Track                   [Page 10]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
    
    4.1.2.1. The Expires Attribute
    
    
       The Expires attribute indicates the maximum lifetime of the cookie,
       represented as the date and time at which the cookie expires.  The
       user agent is not required to retain the cookie until the specified
       date has passed.  In fact, user agents often evict cookies due to
       memory pressure or privacy concerns.
    
    
    4.1.2.2. The Max-Age Attribute
    
    
       The Max-Age attribute indicates the maximum lifetime of the cookie,
       represented as the number of seconds until the cookie expires.  The
       user agent is not required to retain the cookie for the specified
       duration.  In fact, user agents often evict cookies due to memory
       pressure or privacy concerns.
    
          NOTE: Some existing user agents do not support the Max-Age
          attribute.  User agents that do not support the Max-Age attribute
          ignore the attribute.
    
       If a cookie has both the Max-Age and the Expires attribute, the Max-
       Age attribute has precedence and controls the expiration date of the
       cookie.  If a cookie has neither the Max-Age nor the Expires
       attribute, the user agent will retain the cookie until "the current
       session is over" (as defined by the user agent).
    
    
    4.1.2.3. The Domain Attribute
    
    
       The Domain attribute specifies those hosts to which the cookie will
       be sent.  For example, if the value of the Domain attribute is
       "example.com", the user agent will include the cookie in the Cookie
       header when making HTTP requests to example.com, www.example.com, and
       www.corp.example.com.  (Note that a leading %x2E ("."), if present,
       is ignored even though that character is not permitted, but a
       trailing %x2E ("."), if present, will cause the user agent to ignore
       the attribute.)  If the server omits the Domain attribute, the user
       agent will return the cookie only to the origin server.
    
          WARNING: Some existing user agents treat an absent Domain
          attribute as if the Domain attribute were present and contained
          the current host name.  For example, if example.com returns a Set-
          Cookie header without a Domain attribute, these user agents will
          erroneously send the cookie to www.example.com as well.
    
    
    
    
    
    
    
    
    Barth                        Standards Track                   [Page 11]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
       The user agent will reject cookies unless the Domain attribute
       specifies a scope for the cookie that would include the origin
       server.  For example, the user agent will accept a cookie with a
       Domain attribute of "example.com" or of "foo.example.com" from
       foo.example.com, but the user agent will not accept a cookie with a
       Domain attribute of "bar.example.com" or of "baz.foo.example.com".
    
       NOTE: For security reasons, many user agents are configured to reject
       Domain attributes that correspond to "public suffixes".  For example,
       some user agents will reject Domain attributes of "com" or "co.uk".
       (See Section 5.3 for more information.)
    
    
    4.1.2.4. The Path Attribute
    
    
       The scope of each cookie is limited to a set of paths, controlled by
       the Path attribute.  If the server omits the Path attribute, the user
       agent will use the "directory" of the request-uri's path component as
       the default value.  (See Section 5.1.4 for more details.)
    
       The user agent will include the cookie in an HTTP request only if the
       path portion of the request-uri matches (or is a subdirectory of) the
       cookie's Path attribute, where the %x2F ("/") character is
       interpreted as a directory separator.
    
       Although seemingly useful for isolating cookies between different
       paths within a given host, the Path attribute cannot be relied upon
       for security (see Section 8).
    
    
    4.1.2.5. The Secure Attribute
    
    
       The Secure attribute limits the scope of the cookie to "secure"
       channels (where "secure" is defined by the user agent).  When a
       cookie has the Secure attribute, the user agent will include the
       cookie in an HTTP request only if the request is transmitted over a
       secure channel (typically HTTP over Transport Layer Security (TLS)
       [RFC2818]).
    
       Although seemingly useful for protecting cookies from active network
       attackers, the Secure attribute protects only the cookie's
       confidentiality.  An active network attacker can overwrite Secure
       cookies from an insecure channel, disrupting their integrity (see
       Section 8.6 for more details).
    
    
    
    
    
    
    
    
    
    Barth                        Standards Track                   [Page 12]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
    
    4.1.2.6. The HttpOnly Attribute
    
    
       The HttpOnly attribute limits the scope of the cookie to HTTP
       requests.  In particular, the attribute instructs the user agent to
       omit the cookie when providing access to cookies via "non-HTTP" APIs
       (such as a web browser API that exposes cookies to scripts).
    
       Note that the HttpOnly attribute is independent of the Secure
       attribute: a cookie can have both the HttpOnly and the Secure
       attribute.
    
    

    4.2. Cookie

    4.2.1. Syntax

    
    
       The user agent sends stored cookies to the origin server in the
       Cookie header.  If the server conforms to the requirements in
       Section 4.1 (and the user agent conforms to the requirements in
       Section 5), the user agent will send a Cookie header that conforms to
       the following grammar:
    
       cookie-header = "Cookie:" OWS cookie-string OWS
       cookie-string = cookie-pair *( ";" SP cookie-pair )
    
    

    4.2.2. Semantics

    
    
       Each cookie-pair represents a cookie stored by the user agent.  The
       cookie-pair contains the cookie-name and cookie-value the user agent
       received in the Set-Cookie header.
    
       Notice that the cookie attributes are not returned.  In particular,
       the server cannot determine from the Cookie header alone when a
       cookie will expire, for which hosts the cookie is valid, for which
       paths the cookie is valid, or whether the cookie was set with the
       Secure or HttpOnly attributes.
    
       The semantics of individual cookies in the Cookie header are not
       defined by this document.  Servers are expected to imbue these
       cookies with application-specific semantics.
    
       Although cookies are serialized linearly in the Cookie header,
       servers SHOULD NOT rely upon the serialization order.  In particular,
       if the Cookie header contains two cookies with the same name (e.g.,
       that were set with different Path or Domain attributes), servers
       SHOULD NOT rely upon the order in which these cookies appear in the
       header.
    
    
    
    
    
    Barth                        Standards Track                   [Page 13]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
    

    5. User Agent Requirements

    
    
       This section specifies the Cookie and Set-Cookie headers in
       sufficient detail that a user agent implementing these requirements
       precisely can interoperate with existing servers (even those that do
       not conform to the well-behaved profile described in Section 4).
    
       A user agent could enforce more restrictions than those specified
       herein (e.g., for the sake of improved security); however,
       experiments have shown that such strictness reduces the likelihood
       that a user agent will be able to interoperate with existing servers.
    
    

    5.1. Subcomponent Algorithms

    
    
       This section defines some algorithms used by user agents to process
       specific subcomponents of the Cookie and Set-Cookie headers.
    
    

    5.1.1. Dates

    
    
       The user agent MUST use an algorithm equivalent to the following
       algorithm to parse a cookie-date.  Note that the various boolean
       flags defined as a part of the algorithm (i.e., found-time, found-
       day-of-month, found-month, found-year) are initially "not set".
    
       1.  Using the grammar below, divide the cookie-date into date-tokens.
    
       cookie-date     = *delimiter date-token-list *delimiter
       date-token-list = date-token *( 1*delimiter date-token )
       date-token      = 1*non-delimiter
    
       delimiter       = %x09 / %x20-2F / %x3B-40 / %x5B-60 / %x7B-7E
       non-delimiter   = %x00-08 / %x0A-1F / DIGIT / ":" / ALPHA / %x7F-FF
       non-digit       = %x00-2F / %x3A-FF
    
       day-of-month    = 1*2DIGIT ( non-digit *OCTET )
       month           = ( "jan" / "feb" / "mar" / "apr" /
                           "may" / "jun" / "jul" / "aug" /
                           "sep" / "oct" / "nov" / "dec" ) *OCTET
       year            = 2*4DIGIT ( non-digit *OCTET )
       time            = hms-time ( non-digit *OCTET )
       hms-time        = time-field ":" time-field ":" time-field
       time-field      = 1*2DIGIT
    
       2.  Process each date-token sequentially in the order the date-tokens
           appear in the cookie-date:
    
    
    
    
    
    
    Barth                        Standards Track                   [Page 14]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
           1.  If the found-time flag is not set and the token matches the
               time production, set the found-time flag and set the hour-
               value, minute-value, and second-value to the numbers denoted
               by the digits in the date-token, respectively.  Skip the
               remaining sub-steps and continue to the next date-token.
    
           2.  If the found-day-of-month flag is not set and the date-token
               matches the day-of-month production, set the found-day-of-
               month flag and set the day-of-month-value to the number
               denoted by the date-token.  Skip the remaining sub-steps and
               continue to the next date-token.
    
           3.  If the found-month flag is not set and the date-token matches
               the month production, set the found-month flag and set the
               month-value to the month denoted by the date-token.  Skip the
               remaining sub-steps and continue to the next date-token.
    
           4.  If the found-year flag is not set and the date-token matches
               the year production, set the found-year flag and set the
               year-value to the number denoted by the date-token.  Skip the
               remaining sub-steps and continue to the next date-token.
    
       3.  If the year-value is greater than or equal to 70 and less than or
           equal to 99, increment the year-value by 1900.
    
       4.  If the year-value is greater than or equal to 0 and less than or
           equal to 69, increment the year-value by 2000.
    
           1.  NOTE: Some existing user agents interpret two-digit years
               differently.
    
       5.  Abort these steps and fail to parse the cookie-date if:
    
           *  at least one of the found-day-of-month, found-month, found-
              year, or found-time flags is not set,
    
           *  the day-of-month-value is less than 1 or greater than 31,
    
           *  the year-value is less than 1601,
    
           *  the hour-value is greater than 23,
    
           *  the minute-value is greater than 59, or
    
           *  the second-value is greater than 59.
    
           (Note that leap seconds cannot be represented in this syntax.)
    
    
    
    
    Barth                        Standards Track                   [Page 15]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
       6.  Let the parsed-cookie-date be the date whose day-of-month, month,
           year, hour, minute, and second (in UTC) are the day-of-month-
           value, the month-value, the year-value, the hour-value, the
           minute-value, and the second-value, respectively.  If no such
           date exists, abort these steps and fail to parse the cookie-date.
    
       7.  Return the parsed-cookie-date as the result of this algorithm.
    
    

    5.1.2. Canonicalized Host Names

    
    
       A canonicalized host name is the string generated by the following
       algorithm:
    
       1.  Convert the host name to a sequence of individual domain name
           labels.
    
       2.  Convert each label that is not a Non-Reserved LDH (NR-LDH) label,
           to an A-label (see Section 2.3.2.1 of [RFC5890] for the former
           and latter), or to a "punycode label" (a label resulting from the
           "ToASCII" conversion in Section 4 of [RFC3490]), as appropriate
           (see Section 6.3 of this specification).
    
       3.  Concatenate the resulting labels, separated by a %x2E (".")
           character.
    
    

    5.1.3. Domain Matching

    
    
       A string domain-matches a given domain string if at least one of the
       following conditions hold:
    
       o  The domain string and the string are identical.  (Note that both
          the domain string and the string will have been canonicalized to
          lower case at this point.)
    
       o  All of the following conditions hold:
    
          *  The domain string is a suffix of the string.
    
          *  The last character of the string that is not included in the
             domain string is a %x2E (".") character.
    
          *  The string is a host name (i.e., not an IP address).
    
    

    5.1.4. Paths and Path-Match

    
    
       The user agent MUST use an algorithm equivalent to the following
       algorithm to compute the default-path of a cookie:
    
    
    
    
    Barth                        Standards Track                   [Page 16]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
       1.  Let uri-path be the path portion of the request-uri if such a
           portion exists (and empty otherwise).  For example, if the
           request-uri contains just a path (and optional query string),
           then the uri-path is that path (without the %x3F ("?") character
           or query string), and if the request-uri contains a full
           absoluteURI, the uri-path is the path component of that URI.
    
       2.  If the uri-path is empty or if the first character of the uri-
           path is not a %x2F ("/") character, output %x2F ("/") and skip
           the remaining steps.
    
       3.  If the uri-path contains no more than one %x2F ("/") character,
           output %x2F ("/") and skip the remaining step.
    
       4.  Output the characters of the uri-path from the first character up
           to, but not including, the right-most %x2F ("/").
    
       A request-path path-matches a given cookie-path if at least one of
       the following conditions holds:
    
       o  The cookie-path and the request-path are identical.
    
       o  The cookie-path is a prefix of the request-path, and the last
          character of the cookie-path is %x2F ("/").
    
       o  The cookie-path is a prefix of the request-path, and the first
          character of the request-path that is not included in the cookie-
          path is a %x2F ("/") character.
    
    

    5.2. The Set-Cookie Header

    
    
       When a user agent receives a Set-Cookie header field in an HTTP
       response, the user agent MAY ignore the Set-Cookie header field in
       its entirety.  For example, the user agent might wish to block
       responses to "third-party" requests from setting cookies (see
       Section 7.1).
    
       If the user agent does not ignore the Set-Cookie header field in its
       entirety, the user agent MUST parse the field-value of the Set-Cookie
       header field as a set-cookie-string (defined below).
    
       NOTE: The algorithm below is more permissive than the grammar in
       Section 4.1.  For example, the algorithm strips leading and trailing
       whitespace from the cookie name and value (but maintains internal
       whitespace), whereas the grammar in Section 4.1 forbids whitespace in
       these positions.  User agents use this algorithm so as to
       interoperate with servers that do not follow the recommendations in
       Section 4.
    
    
    
    Barth                        Standards Track                   [Page 17]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
       A user agent MUST use an algorithm equivalent to the following
       algorithm to parse a "set-cookie-string":
    
       1.  If the set-cookie-string contains a %x3B (";") character:
    
              The name-value-pair string consists of the characters up to,
              but not including, the first %x3B (";"), and the unparsed-
              attributes consist of the remainder of the set-cookie-string
              (including the %x3B (";") in question).
    
           Otherwise:
    
              The name-value-pair string consists of all the characters
              contained in the set-cookie-string, and the unparsed-
              attributes is the empty string.
    
       2.  If the name-value-pair string lacks a %x3D ("=") character,
           ignore the set-cookie-string entirely.
    
       3.  The (possibly empty) name string consists of the characters up
           to, but not including, the first %x3D ("=") character, and the
           (possibly empty) value string consists of the characters after
           the first %x3D ("=") character.
    
       4.  Remove any leading or trailing WSP characters from the name
           string and the value string.
    
       5.  If the name string is empty, ignore the set-cookie-string
           entirely.
    
       6.  The cookie-name is the name string, and the cookie-value is the
           value string.
    
       The user agent MUST use an algorithm equivalent to the following
       algorithm to parse the unparsed-attributes:
    
       1.  If the unparsed-attributes string is empty, skip the rest of
           these steps.
    
       2.  Discard the first character of the unparsed-attributes (which
           will be a %x3B (";") character).
    
       3.  If the remaining unparsed-attributes contains a %x3B (";")
           character:
    
              Consume the characters of the unparsed-attributes up to, but
              not including, the first %x3B (";") character.
    
    
    
    
    Barth                        Standards Track                   [Page 18]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
           Otherwise:
    
              Consume the remainder of the unparsed-attributes.
    
           Let the cookie-av string be the characters consumed in this step.
    
       4.  If the cookie-av string contains a %x3D ("=") character:
    
              The (possibly empty) attribute-name string consists of the
              characters up to, but not including, the first %x3D ("=")
              character, and the (possibly empty) attribute-value string
              consists of the characters after the first %x3D ("=")
              character.
    
           Otherwise:
    
              The attribute-name string consists of the entire cookie-av
              string, and the attribute-value string is empty.
    
       5.  Remove any leading or trailing WSP characters from the attribute-
           name string and the attribute-value string.
    
       6.  Process the attribute-name and attribute-value according to the
           requirements in the following subsections.  (Notice that
           attributes with unrecognized attribute-names are ignored.)
    
       7.  Return to Step 1 of this algorithm.
    
       When the user agent finishes parsing the set-cookie-string, the user
       agent is said to "receive a cookie" from the request-uri with name
       cookie-name, value cookie-value, and attributes cookie-attribute-
       list.  (See Section 5.3 for additional requirements triggered by
       receiving a cookie.)
    
    

    5.2.1. The Expires Attribute

    
    
       If the attribute-name case-insensitively matches the string
       "Expires", the user agent MUST process the cookie-av as follows.
    
       Let the expiry-time be the result of parsing the attribute-value as
       cookie-date (see Section 5.1.1).
    
       If the attribute-value failed to parse as a cookie date, ignore the
       cookie-av.
    
       If the expiry-time is later than the last date the user agent can
       represent, the user agent MAY replace the expiry-time with the last
       representable date.
    
    
    
    Barth                        Standards Track                   [Page 19]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
       If the expiry-time is earlier than the earliest date the user agent
       can represent, the user agent MAY replace the expiry-time with the
       earliest representable date.
    
       Append an attribute to the cookie-attribute-list with an attribute-
       name of Expires and an attribute-value of expiry-time.
    
    

    5.2.2. The Max-Age Attribute

    
    
       If the attribute-name case-insensitively matches the string "Max-
       Age", the user agent MUST process the cookie-av as follows.
    
       If the first character of the attribute-value is not a DIGIT or a "-"
       character, ignore the cookie-av.
    
       If the remainder of attribute-value contains a non-DIGIT character,
       ignore the cookie-av.
    
       Let delta-seconds be the attribute-value converted to an integer.
    
       If delta-seconds is less than or equal to zero (0), let expiry-time
       be the earliest representable date and time.  Otherwise, let the
       expiry-time be the current date and time plus delta-seconds seconds.
    
       Append an attribute to the cookie-attribute-list with an attribute-
       name of Max-Age and an attribute-value of expiry-time.
    
    

    5.2.3. The Domain Attribute

    
    
       If the attribute-name case-insensitively matches the string "Domain",
       the user agent MUST process the cookie-av as follows.
    
       If the attribute-value is empty, the behavior is undefined.  However,
       the user agent SHOULD ignore the cookie-av entirely.
    
       If the first character of the attribute-value string is %x2E ("."):
    
          Let cookie-domain be the attribute-value without the leading %x2E
          (".") character.
    
       Otherwise:
    
          Let cookie-domain be the entire attribute-value.
    
       Convert the cookie-domain to lower case.
    
       Append an attribute to the cookie-attribute-list with an attribute-
       name of Domain and an attribute-value of cookie-domain.
    
    
    
    Barth                        Standards Track                   [Page 20]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
    

    5.2.4. The Path Attribute

    
    
       If the attribute-name case-insensitively matches the string "Path",
       the user agent MUST process the cookie-av as follows.
    
       If the attribute-value is empty or if the first character of the
       attribute-value is not %x2F ("/"):
    
          Let cookie-path be the default-path.
    
       Otherwise:
    
          Let cookie-path be the attribute-value.
    
       Append an attribute to the cookie-attribute-list with an attribute-
       name of Path and an attribute-value of cookie-path.
    
    

    5.2.5. The Secure Attribute

    
    
       If the attribute-name case-insensitively matches the string "Secure",
       the user agent MUST append an attribute to the cookie-attribute-list
       with an attribute-name of Secure and an empty attribute-value.
    
    

    5.2.6. The HttpOnly Attribute

    
    
       If the attribute-name case-insensitively matches the string
       "HttpOnly", the user agent MUST append an attribute to the cookie-
       attribute-list with an attribute-name of HttpOnly and an empty
       attribute-value.
    
    

    5.3. Storage Model

    
    
       The user agent stores the following fields about each cookie: name,
       value, expiry-time, domain, path, creation-time, last-access-time,
       persistent-flag, host-only-flag, secure-only-flag, and http-only-
       flag.
    
       When the user agent "receives a cookie" from a request-uri with name
       cookie-name, value cookie-value, and attributes cookie-attribute-
       list, the user agent MUST process the cookie as follows:
    
       1.   A user agent MAY ignore a received cookie in its entirety.  For
            example, the user agent might wish to block receiving cookies
            from "third-party" responses or the user agent might not wish to
            store cookies that exceed some size.
    
    
    
    
    
    
    Barth                        Standards Track                   [Page 21]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
       2.   Create a new cookie with name cookie-name, value cookie-value.
            Set the creation-time and the last-access-time to the current
            date and time.
    
       3.   If the cookie-attribute-list contains an attribute with an
            attribute-name of "Max-Age":
    
               Set the cookie's persistent-flag to true.
    
               Set the cookie's expiry-time to attribute-value of the last
               attribute in the cookie-attribute-list with an attribute-name
               of "Max-Age".
    
            Otherwise, if the cookie-attribute-list contains an attribute
            with an attribute-name of "Expires" (and does not contain an
            attribute with an attribute-name of "Max-Age"):
    
               Set the cookie's persistent-flag to true.
    
               Set the cookie's expiry-time to attribute-value of the last
               attribute in the cookie-attribute-list with an attribute-name
               of "Expires".
    
            Otherwise:
    
               Set the cookie's persistent-flag to false.
    
               Set the cookie's expiry-time to the latest representable
               date.
    
       4.   If the cookie-attribute-list contains an attribute with an
            attribute-name of "Domain":
    
               Let the domain-attribute be the attribute-value of the last
               attribute in the cookie-attribute-list with an attribute-name
               of "Domain".
    
            Otherwise:
    
               Let the domain-attribute be the empty string.
    
       5.   If the user agent is configured to reject "public suffixes" and
            the domain-attribute is a public suffix:
    
               If the domain-attribute is identical to the canonicalized
               request-host:
    
                  Let the domain-attribute be the empty string.
    
    
    
    Barth                        Standards Track                   [Page 22]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
               Otherwise:
    
                  Ignore the cookie entirely and abort these steps.
    
               NOTE: A "public suffix" is a domain that is controlled by a
               public registry, such as "com", "co.uk", and "pvt.k12.wy.us".
               This step is essential for preventing attacker.com from
               disrupting the integrity of example.com by setting a cookie
               with a Domain attribute of "com".  Unfortunately, the set of
               public suffixes (also known as "registry controlled domains")
               changes over time.  If feasible, user agents SHOULD use an
               up-to-date public suffix list, such as the one maintained by
               the Mozilla project at <http://publicsuffix.org/>.
    
       6.   If the domain-attribute is non-empty:
    
               If the canonicalized request-host does not domain-match the
               domain-attribute:
    
                  Ignore the cookie entirely and abort these steps.
    
               Otherwise:
    
                  Set the cookie's host-only-flag to false.
    
                  Set the cookie's domain to the domain-attribute.
    
            Otherwise:
    
               Set the cookie's host-only-flag to true.
    
               Set the cookie's domain to the canonicalized request-host.
    
       7.   If the cookie-attribute-list contains an attribute with an
            attribute-name of "Path", set the cookie's path to attribute-
            value of the last attribute in the cookie-attribute-list with an
            attribute-name of "Path".  Otherwise, set the cookie's path to
            the default-path of the request-uri.
    
       8.   If the cookie-attribute-list contains an attribute with an
            attribute-name of "Secure", set the cookie's secure-only-flag to
            true.  Otherwise, set the cookie's secure-only-flag to false.
    
       9.   If the cookie-attribute-list contains an attribute with an
            attribute-name of "HttpOnly", set the cookie's http-only-flag to
            true.  Otherwise, set the cookie's http-only-flag to false.
    
    
    
    
    
    Barth                        Standards Track                   [Page 23]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
       10.  If the cookie was received from a "non-HTTP" API and the
            cookie's http-only-flag is set, abort these steps and ignore the
            cookie entirely.
    
       11.  If the cookie store contains a cookie with the same name,
            domain, and path as the newly created cookie:
    
            1.  Let old-cookie be the existing cookie with the same name,
                domain, and path as the newly created cookie.  (Notice that
                this algorithm maintains the invariant that there is at most
                one such cookie.)
    
            2.  If the newly created cookie was received from a "non-HTTP"
                API and the old-cookie's http-only-flag is set, abort these
                steps and ignore the newly created cookie entirely.
    
            3.  Update the creation-time of the newly created cookie to
                match the creation-time of the old-cookie.
    
            4.  Remove the old-cookie from the cookie store.
    
       12.  Insert the newly created cookie into the cookie store.
    
       A cookie is "expired" if the cookie has an expiry date in the past.
    
       The user agent MUST evict all expired cookies from the cookie store
       if, at any time, an expired cookie exists in the cookie store.
    
       At any time, the user agent MAY "remove excess cookies" from the
       cookie store if the number of cookies sharing a domain field exceeds
       some implementation-defined upper bound (such as 50 cookies).
    
       At any time, the user agent MAY "remove excess cookies" from the
       cookie store if the cookie store exceeds some predetermined upper
       bound (such as 3000 cookies).
    
       When the user agent removes excess cookies from the cookie store, the
       user agent MUST evict cookies in the following priority order:
    
       1.  Expired cookies.
    
       2.  Cookies that share a domain field with more than a predetermined
           number of other cookies.
    
       3.  All cookies.
    
       If two cookies have the same removal priority, the user agent MUST
       evict the cookie with the earliest last-access date first.
    
    
    
    Barth                        Standards Track                   [Page 24]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
       When "the current session is over" (as defined by the user agent),
       the user agent MUST remove from the cookie store all cookies with the
       persistent-flag set to false.
    
    

    5.4. The Cookie Header

    
    
       The user agent includes stored cookies in the Cookie HTTP request
       header.
    
       When the user agent generates an HTTP request, the user agent MUST
       NOT attach more than one Cookie header field.
    
       A user agent MAY omit the Cookie header in its entirety.  For
       example, the user agent might wish to block sending cookies during
       "third-party" requests from setting cookies (see Section 7.1).
    
       If the user agent does attach a Cookie header field to an HTTP
       request, the user agent MUST send the cookie-string (defined below)
       as the value of the header field.
    
       The user agent MUST use an algorithm equivalent to the following
       algorithm to compute the "cookie-string" from a cookie store and a
       request-uri:
    
       1.  Let cookie-list be the set of cookies from the cookie store that
           meets all of the following requirements:
    
           *  Either:
    
                 The cookie's host-only-flag is true and the canonicalized
                 request-host is identical to the cookie's domain.
    
              Or:
    
                 The cookie's host-only-flag is false and the canonicalized
                 request-host domain-matches the cookie's domain.
    
           *  The request-uri's path path-matches the cookie's path.
    
           *  If the cookie's secure-only-flag is true, then the request-
              uri's scheme must denote a "secure" protocol (as defined by
              the user agent).
    
                 NOTE: The notion of a "secure" protocol is not defined by
                 this document.  Typically, user agents consider a protocol
                 secure if the protocol makes use of transport-layer
    
    
    
    
    
    Barth                        Standards Track                   [Page 25]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
                 security, such as SSL or TLS.  For example, most user
                 agents consider "https" to be a scheme that denotes a
                 secure protocol.
    
           *  If the cookie's http-only-flag is true, then exclude the
              cookie if the cookie-string is being generated for a "non-
              HTTP" API (as defined by the user agent).
    
       2.  The user agent SHOULD sort the cookie-list in the following
           order:
    
           *  Cookies with longer paths are listed before cookies with
              shorter paths.
    
           *  Among cookies that have equal-length path fields, cookies with
              earlier creation-times are listed before cookies with later
              creation-times.
    
           NOTE: Not all user agents sort the cookie-list in this order, but
           this order reflects common practice when this document was
           written, and, historically, there have been servers that
           (erroneously) depended on this order.
    
       3.  Update the last-access-time of each cookie in the cookie-list to
           the current date and time.
    
       4.  Serialize the cookie-list into a cookie-string by processing each
           cookie in the cookie-list in order:
    
           1.  Output the cookie's name, the %x3D ("=") character, and the
               cookie's value.
    
           2.  If there is an unprocessed cookie in the cookie-list, output
               the characters %x3B and %x20 ("; ").
    
       NOTE: Despite its name, the cookie-string is actually a sequence of
       octets, not a sequence of characters.  To convert the cookie-string
       (or components thereof) into a sequence of characters (e.g., for
       presentation to the user), the user agent might wish to try using the
       UTF-8 character encoding [RFC3629] to decode the octet sequence.
       This decoding might fail, however, because not every sequence of
       octets is valid UTF-8.
    
    
    
    
    
    
    
    
    
    Barth                        Standards Track                   [Page 26]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
    

    6. Implementation Considerations

    6.1. Limits

    
    
       Practical user agent implementations have limits on the number and
       size of cookies that they can store.  General-use user agents SHOULD
       provide each of the following minimum capabilities:
    
       o  At least 4096 bytes per cookie (as measured by the sum of the
          length of the cookie's name, value, and attributes).
    
       o  At least 50 cookies per domain.
    
       o  At least 3000 cookies total.
    
       Servers SHOULD use as few and as small cookies as possible to avoid
       reaching these implementation limits and to minimize network
       bandwidth due to the Cookie header being included in every request.
    
       Servers SHOULD gracefully degrade if the user agent fails to return
       one or more cookies in the Cookie header because the user agent might
       evict any cookie at any time on orders from the user.
    
    

    6.2. Application Programming Interfaces

    
    
       One reason the Cookie and Set-Cookie headers use such esoteric syntax
       is that many platforms (both in servers and user agents) provide a
       string-based application programming interface (API) to cookies,
       requiring application-layer programmers to generate and parse the
       syntax used by the Cookie and Set-Cookie headers, which many
       programmers have done incorrectly, resulting in interoperability
       problems.
    
       Instead of providing string-based APIs to cookies, platforms would be
       well-served by providing more semantic APIs.  It is beyond the scope
       of this document to recommend specific API designs, but there are
       clear benefits to accepting an abstract "Date" object instead of a
       serialized date string.
    
    

    6.3. IDNA Dependency and Migration

    
    
       IDNA2008 [RFC5890] supersedes IDNA2003 [RFC3490].  However, there are
       differences between the two specifications, and thus there can be
       differences in processing (e.g., converting) domain name labels that
       have been registered under one from those registered under the other.
       There will be a transition period of some time during which IDNA2003-
       based domain name labels will exist in the wild.  User agents SHOULD
       implement IDNA2008 [RFC5890] and MAY implement [UTS46] or [RFC5895]
    
    
    
    Barth                        Standards Track                   [Page 27]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
       in order to facilitate their IDNA transition.  If a user agent does
       not implement IDNA2008, the user agent MUST implement IDNA2003
       [RFC3490].
    
    

    7. Privacy Considerations

    
    
       Cookies are often criticized for letting servers track users.  For
       example, a number of "web analytics" companies use cookies to
       recognize when a user returns to a web site or visits another web
       site.  Although cookies are not the only mechanism servers can use to
       track users across HTTP requests, cookies facilitate tracking because
       they are persistent across user agent sessions and can be shared
       between hosts.
    
    

    7.1. Third-Party Cookies

    
    
       Particularly worrisome are so-called "third-party" cookies.  In
       rendering an HTML document, a user agent often requests resources
       from other servers (such as advertising networks).  These third-party
       servers can use cookies to track the user even if the user never
       visits the server directly.  For example, if a user visits a site
       that contains content from a third party and then later visits
       another site that contains content from the same third party, the
       third party can track the user between the two sites.
    
       Some user agents restrict how third-party cookies behave.  For
       example, some of these user agents refuse to send the Cookie header
       in third-party requests.  Others refuse to process the Set-Cookie
       header in responses to third-party requests.  User agents vary widely
       in their third-party cookie policies.  This document grants user
       agents wide latitude to experiment with third-party cookie policies
       that balance the privacy and compatibility needs of their users.
       However, this document does not endorse any particular third-party
       cookie policy.
    
       Third-party cookie blocking policies are often ineffective at
       achieving their privacy goals if servers attempt to work around their
       restrictions to track users.  In particular, two collaborating
       servers can often track users without using cookies at all by
       injecting identifying information into dynamic URLs.
    
    

    7.2. User Controls

    
    
       User agents SHOULD provide users with a mechanism for managing the
       cookies stored in the cookie store.  For example, a user agent might
       let users delete all cookies received during a specified time period
    
    
    
    
    
    Barth                        Standards Track                   [Page 28]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
       or all the cookies related to a particular domain.  In addition, many
       user agents include a user interface element that lets users examine
       the cookies stored in their cookie store.
    
       User agents SHOULD provide users with a mechanism for disabling
       cookies.  When cookies are disabled, the user agent MUST NOT include
       a Cookie header in outbound HTTP requests and the user agent MUST NOT
       process Set-Cookie headers in inbound HTTP responses.
    
       Some user agents provide users the option of preventing persistent
       storage of cookies across sessions.  When configured thusly, user
       agents MUST treat all received cookies as if the persistent-flag were
       set to false.  Some popular user agents expose this functionality via
       "private browsing" mode [Aggarwal2010].
    
       Some user agents provide users with the ability to approve individual
       writes to the cookie store.  In many common usage scenarios, these
       controls generate a large number of prompts.  However, some privacy-
       conscious users find these controls useful nonetheless.
    
    

    7.3. Expiration Dates

    
    
       Although servers can set the expiration date for cookies to the
       distant future, most user agents do not actually retain cookies for
       multiple decades.  Rather than choosing gratuitously long expiration
       periods, servers SHOULD promote user privacy by selecting reasonable
       cookie expiration periods based on the purpose of the cookie.  For
       example, a typical session identifier might reasonably be set to
       expire in two weeks.
    
    

    8. Security Considerations

    8.1. Overview

    
    
       Cookies have a number of security pitfalls.  This section overviews a
       few of the more salient issues.
    
       In particular, cookies encourage developers to rely on ambient
       authority for authentication, often becoming vulnerable to attacks
       such as cross-site request forgery [CSRF].  Also, when storing
       session identifiers in cookies, developers often create session
       fixation vulnerabilities.
    
       Transport-layer encryption, such as that employed in HTTPS, is
       insufficient to prevent a network attacker from obtaining or altering
       a victim's cookies because the cookie protocol itself has various
       vulnerabilities (see "Weak Confidentiality" and "Weak Integrity",
    
    
    
    
    Barth                        Standards Track                   [Page 29]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
       below).  In addition, by default, cookies do not provide
       confidentiality or integrity from network attackers, even when used
       in conjunction with HTTPS.
    
    

    8.2. Ambient Authority

    
    
       A server that uses cookies to authenticate users can suffer security
       vulnerabilities because some user agents let remote parties issue
       HTTP requests from the user agent (e.g., via HTTP redirects or HTML
       forms).  When issuing those requests, user agents attach cookies even
       if the remote party does not know the contents of the cookies,
       potentially letting the remote party exercise authority at an unwary
       server.
    
       Although this security concern goes by a number of names (e.g.,
       cross-site request forgery, confused deputy), the issue stems from
       cookies being a form of ambient authority.  Cookies encourage server
       operators to separate designation (in the form of URLs) from
       authorization (in the form of cookies).  Consequently, the user agent
       might supply the authorization for a resource designated by the
       attacker, possibly causing the server or its clients to undertake
       actions designated by the attacker as though they were authorized by
       the user.
    
       Instead of using cookies for authorization, server operators might
       wish to consider entangling designation and authorization by treating
       URLs as capabilities.  Instead of storing secrets in cookies, this
       approach stores secrets in URLs, requiring the remote entity to
       supply the secret itself.  Although this approach is not a panacea,
       judicious application of these principles can lead to more robust
       security.
    
    

    8.3. Clear Text

    
    
       Unless sent over a secure channel (such as TLS), the information in
       the Cookie and Set-Cookie headers is transmitted in the clear.
    
       1.  All sensitive information conveyed in these headers is exposed to
           an eavesdropper.
    
       2.  A malicious intermediary could alter the headers as they travel
           in either direction, with unpredictable results.
    
       3.  A malicious client could alter the Cookie header before
           transmission, with unpredictable results.
    
    
    
    
    
    
    Barth                        Standards Track                   [Page 30]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
       Servers SHOULD encrypt and sign the contents of cookies (using
       whatever format the server desires) when transmitting them to the
       user agent (even when sending the cookies over a secure channel).
       However, encrypting and signing cookie contents does not prevent an
       attacker from transplanting a cookie from one user agent to another
       or from replaying the cookie at a later time.
    
       In addition to encrypting and signing the contents of every cookie,
       servers that require a higher level of security SHOULD use the Cookie
       and Set-Cookie headers only over a secure channel.  When using
       cookies over a secure channel, servers SHOULD set the Secure
       attribute (see Section 4.1.2.5) for every cookie.  If a server does
       not set the Secure attribute, the protection provided by the secure
       channel will be largely moot.
    
       For example, consider a webmail server that stores a session
       identifier in a cookie and is typically accessed over HTTPS.  If the
       server does not set the Secure attribute on its cookies, an active
       network attacker can intercept any outbound HTTP request from the
       user agent and redirect that request to the webmail server over HTTP.
       Even if the webmail server is not listening for HTTP connections, the
       user agent will still include cookies in the request.  The active
       network attacker can intercept these cookies, replay them against the
       server, and learn the contents of the user's email.  If, instead, the
       server had set the Secure attribute on its cookies, the user agent
       would not have included the cookies in the clear-text request.
    
    

    8.4. Session Identifiers

    
    
       Instead of storing session information directly in a cookie (where it
       might be exposed to or replayed by an attacker), servers commonly
       store a nonce (or "session identifier") in a cookie.  When the server
       receives an HTTP request with a nonce, the server can look up state
       information associated with the cookie using the nonce as a key.
    
       Using session identifier cookies limits the damage an attacker can
       cause if the attacker learns the contents of a cookie because the
       nonce is useful only for interacting with the server (unlike non-
       nonce cookie content, which might itself be sensitive).  Furthermore,
       using a single nonce prevents an attacker from "splicing" together
       cookie content from two interactions with the server, which could
       cause the server to behave unexpectedly.
    
       Using session identifiers is not without risk.  For example, the
       server SHOULD take care to avoid "session fixation" vulnerabilities.
       A session fixation attack proceeds in three steps.  First, the
       attacker transplants a session identifier from his or her user agent
       to the victim's user agent.  Second, the victim uses that session
    
    
    
    Barth                        Standards Track                   [Page 31]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
       identifier to interact with the server, possibly imbuing the session
       identifier with the user's credentials or confidential information.
       Third, the attacker uses the session identifier to interact with
       server directly, possibly obtaining the user's authority or
       confidential information.
    
    

    8.5. Weak Confidentiality

    
    
       Cookies do not provide isolation by port.  If a cookie is readable by
       a service running on one port, the cookie is also readable by a
       service running on another port of the same server.  If a cookie is
       writable by a service on one port, the cookie is also writable by a
       service running on another port of the same server.  For this reason,
       servers SHOULD NOT both run mutually distrusting services on
       different ports of the same host and use cookies to store security-
       sensitive information.
    
       Cookies do not provide isolation by scheme.  Although most commonly
       used with the http and https schemes, the cookies for a given host
       might also be available to other schemes, such as ftp and gopher.
       Although this lack of isolation by scheme is most apparent in non-
       HTTP APIs that permit access to cookies (e.g., HTML's document.cookie
       API), the lack of isolation by scheme is actually present in
       requirements for processing cookies themselves (e.g., consider
       retrieving a URI with the gopher scheme via HTTP).
    
       Cookies do not always provide isolation by path.  Although the
       network-level protocol does not send cookies stored for one path to
       another, some user agents expose cookies via non-HTTP APIs, such as
       HTML's document.cookie API.  Because some of these user agents (e.g.,
       web browsers) do not isolate resources received from different paths,
       a resource retrieved from one path might be able to access cookies
       stored for another path.
    
    

    8.6. Weak Integrity

    
    
       Cookies do not provide integrity guarantees for sibling domains (and
       their subdomains).  For example, consider foo.example.com and
       bar.example.com.  The foo.example.com server can set a cookie with a
       Domain attribute of "example.com" (possibly overwriting an existing
       "example.com" cookie set by bar.example.com), and the user agent will
       include that cookie in HTTP requests to bar.example.com.  In the
       worst case, bar.example.com will be unable to distinguish this cookie
       from a cookie it set itself.  The foo.example.com server might be
       able to leverage this ability to mount an attack against
       bar.example.com.
    
    
    
    
    
    Barth                        Standards Track                   [Page 32]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
       Even though the Set-Cookie header supports the Path attribute, the
       Path attribute does not provide any integrity protection because the
       user agent will accept an arbitrary Path attribute in a Set-Cookie
       header.  For example, an HTTP response to a request for
       http://example.com/foo/bar can set a cookie with a Path attribute of
       "/qux".  Consequently, servers SHOULD NOT both run mutually
       distrusting services on different paths of the same host and use
       cookies to store security-sensitive information.
    
       An active network attacker can also inject cookies into the Cookie
       header sent to https://example.com/ by impersonating a response from
       http://example.com/ and injecting a Set-Cookie header.  The HTTPS
       server at example.com will be unable to distinguish these cookies
       from cookies that it set itself in an HTTPS response.  An active
       network attacker might be able to leverage this ability to mount an
       attack against example.com even if example.com uses HTTPS
       exclusively.
    
       Servers can partially mitigate these attacks by encrypting and
       signing the contents of their cookies.  However, using cryptography
       does not mitigate the issue completely because an attacker can replay
       a cookie he or she received from the authentic example.com server in
       the user's session, with unpredictable results.
    
       Finally, an attacker might be able to force the user agent to delete
       cookies by storing a large number of cookies.  Once the user agent
       reaches its storage limit, the user agent will be forced to evict
       some cookies.  Servers SHOULD NOT rely upon user agents retaining
       cookies.
    
    

    8.7. Reliance on DNS

    
    
       Cookies rely upon the Domain Name System (DNS) for security.  If the
       DNS is partially or fully compromised, the cookie protocol might fail
       to provide the security properties required by applications.
    
    

    9. IANA Considerations

    
    
       The permanent message header field registry (see [RFC3864]) has been
       updated with the following registrations.
    
    
    
    
    
    
    
    
    
    
    
    Barth                        Standards Track                   [Page 33]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
    

    9.1. Cookie

    
    
       Header field name: Cookie
    
       Applicable protocol: http
    
       Status: standard
    
       Author/Change controller: IETF
    
       Specification document: this specification (Section 5.4)
    
    

    9.2. Set-Cookie

    
    
       Header field name: Set-Cookie
    
       Applicable protocol: http
    
       Status: standard
    
       Author/Change controller: IETF
    
       Specification document: this specification (Section 5.2)
    
    

    9.3. Cookie2

    
    
       Header field name: Cookie2
    
       Applicable protocol: http
    
       Status: obsoleted
    
       Author/Change controller: IETF
    
       Specification document: [RFC2965]
    
    

    9.4. Set-Cookie2

    
    
       Header field name: Set-Cookie2
    
       Applicable protocol: http
    
       Status: obsoleted
    
       Author/Change controller: IETF
    
       Specification document: [RFC2965]
    
    
    
    
    Barth                        Standards Track                   [Page 34]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
    

    10. References

    10.1. Normative References

    
    
       [RFC1034]  Mockapetris, P., "Domain names - concepts and facilities",
                  STD 13, RFC 1034, November 1987.
    
       [RFC1123]  Braden, R., "Requirements for Internet Hosts - Application
                  and Support", STD 3, RFC 1123, October 1989.
    
       [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
                  Requirement Levels", BCP 14, RFC 2119, March 1997.
    
       [RFC2616]  Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
                  Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
                  Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.
    
       [RFC3490]  Faltstrom, P., Hoffman, P., and A. Costello,
                  "Internationalizing Domain Names in Applications (IDNA)",
                  RFC 3490, March 2003.
    
                  See Section 6.3 for an explanation why the normative
                  reference to an obsoleted specification is needed.
    
       [RFC4790]  Newman, C., Duerst, M., and A. Gulbrandsen, "Internet
                  Application Protocol Collation Registry", RFC 4790,
                  March 2007.
    
       [RFC5234]  Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
                  Specifications: ABNF", STD 68, RFC 5234, January 2008.
    
       [RFC5890]  Klensin, J., "Internationalized Domain Names for
                  Applications (IDNA): Definitions and Document Framework",
                  RFC 5890, August 2010.
    
       [USASCII]  American National Standards Institute, "Coded Character
                  Set -- 7-bit American Standard Code for Information
                  Interchange", ANSI X3.4, 1986.
    
    

    10.2. Informative References

    
    
       [RFC2109]  Kristol, D. and L. Montulli, "HTTP State Management
                  Mechanism", RFC 2109, February 1997.
    
       [RFC2965]  Kristol, D. and L. Montulli, "HTTP State Management
                  Mechanism", RFC 2965, October 2000.
    
    
    
    
    
    Barth                        Standards Track                   [Page 35]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
       [RFC2818]  Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.
    
       [Netscape] Netscape Communications Corp., "Persistent Client State --
                  HTTP Cookies", 1999, <http://web.archive.org/web/
                  20020803110822/http://wp.netscape.com/newsref/std/
                  cookie_spec.html>.
    
       [Kri2001]  Kristol, D., "HTTP Cookies: Standards, Privacy, and
                  Politics", ACM Transactions on Internet Technology Vol. 1,
                  #2, November 2001, <http://arxiv.org/abs/cs.SE/0105018>.
    
       [RFC3629]  Yergeau, F., "UTF-8, a transformation format of ISO
                  10646", STD 63, RFC 3629, November 2003.
    
       [RFC4648]  Josefsson, S., "The Base16, Base32, and Base64 Data
                  Encodings", RFC 4648, October 2006.
    
       [RFC3864]  Klyne, G., Nottingham, M., and J. Mogul, "Registration
                  Procedures for Message Header Fields", BCP 90, RFC 3864,
                  September 2004.
    
       [RFC5895]  Resnick, P. and P. Hoffman, "Mapping Characters for
                  Internationalized Domain Names in Applications (IDNA)
                  2008", RFC 5895, September 2010.
    
       [UTS46]    Davis, M. and M. Suignard, "Unicode IDNA Compatibility
                  Processing", Unicode Technical Standards # 46, 2010,
                  <http://unicode.org/reports/tr46/>.
    
       [CSRF]     Barth, A., Jackson, C., and J. Mitchell, "Robust Defenses
                  for Cross-Site Request Forgery", 2008,
                  <http://portal.acm.org/citation.cfm?id=1455770.1455782>.
    
       [Aggarwal2010]
                  Aggarwal, G., Burzstein, E., Jackson, C., and D. Boneh,
                  "An Analysis of Private Browsing Modes in Modern
                  Browsers", 2010, <http://www.usenix.org/events/sec10/tech/
                  full_papers/Aggarwal.pdf>.
    
    
    
    
    
    
    
    
    
    
    
    
    
    Barth                        Standards Track                   [Page 36]

    
    RFC 6265             HTTP State Management Mechanism          April 2011
    
    
    

    Appendix A. Acknowledgements

    
    
       This document borrows heavily from RFC 2109 [RFC2109].  We are
       indebted to David M. Kristol and Lou Montulli for their efforts to
       specify cookies.  David M. Kristol, in particular, provided
       invaluable advice on navigating the IETF process.  We would also like
       to thank Thomas Broyer, Tyler Close, Alissa Cooper, Bil Corry,
       corvid, Lisa Dusseault, Roy T. Fielding, Blake Frantz, Anne van
       Kesteren, Eran Hammer-Lahav, Jeff Hodges, Bjoern Hoehrmann, Achim
       Hoffmann, Georg Koppen, Dean McNamee, Alexey Melnikov, Mark Miller,
       Mark Pauley, Yngve N. Pettersen, Julian Reschke, Peter Saint-Andre,
       Mark Seaborn, Maciej Stachowiak, Daniel Stenberg, Tatsuhiro
       Tsujikawa, David Wagner, Dan Winship, and Dan Witte for their
       valuable feedback on this document.
    
    Author's Address
    
       Adam Barth
       University of California, Berkeley
    
       EMail: abarth@eecs.berkeley.edu
       URI:   http://www.adambarth.com/
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    Barth                        Standards Track                   [Page 37]
    
    

    cookie是现代web系统开发中非常重要的一个技术,最近对cookie标准RFC6265进行了了解,从中选取了部分内容。

    1.cookie的主要作用

    因为HTTP协议是无状态的,对于一个浏览器发出的多次请求,WEB服务器无法区分是不是来源于同一个浏览器。所以,需要额外的数据用于维护会话。 Cookie 正是这样的一段随HTTP请求一起被传递的额外数据。

    2.cookie的主要作用

    除了name、value这两个必备属性外,还有下面几个可选属性(这些属性名都是大小写不敏感的,并且只要设置了浏览器是必须处理的),分别控制cookie的生存周期、可见性、安全性。

    2.1) expires:绝对过期时间

    如果这个属性的值不能被转换为日期,客户端会忽略该属性。当同一个cookie两次请求的expires值不相同时,新的 可能 会替换旧的。
    If the attribute-value failed to parse as a cookie date, ignore the cookie-av.
    If the expiry-time is later than the last date the user agent can represent, the user agent MAY replace the expiry-time with the last representable date.
    If the expiry-time is earlier than the earliest date the user agent can represent, the user agent MAY replace the expiry-time with the earliest representable date

    2.2)Max-Age:相对过期时间,以秒为单位。如果该属性的值不是数字,客户端将不做处理。

    If the first character of the attribute-value is not a DIGIT or a "-" character, ignore the cookie-av.
    If the remainder of attribute-value contains a non-DIGIT character, ignore the cookie-av.
    If delta-seconds is less than or equal to zero (0), let expiry-time be the earliest representable date and time. Otherwise, let the expiry-time be the current date and time plus delta-seconds seconds.

    Max-age和expires这两个属性控制cookie生命周期。 如果两个都设置了,以Max-Age为准。 默认情况下,cookie是暂时存在的,他们存储的值只在浏览器会话期间存在。当浏览器推出后,这些值也就丢失了.
    If a cookie has neither the Max-Age nor the Expires attribute, the user agent will retain the cookie until "the current session is over" (as defined by the user agent)。

    2.3)path:指定了与cookie关联在一起的网页,默认情况下,cookie会和创建它的网页以及与这个网页处于同一个目录下的网页和处于该目录的子目录下的网页关联,同时不能用这个属性来确定安全性

    The scope of each cookie is limited to a set of paths, controlled by the Path attribute. If the server omits the Path attribute, the user agent will use the "directory" of the request-uri’s path component as the default value.
    The user agent will include the cookie in an HTTP request only if the path portion of the request-uri matches (or is a subdirectory of) the cookie’s Path attribute, where the %x2F ("/") character is interpreted as a directory separator.
    Although seemingly useful for isolating cookies between different paths within a given host,the Path attribute cannot be relied upon for security

    2.4)domain:如果没有设置cookie的domain值,该属性的默认值就是创建cookie的网页所在的服务器的主机名

    If the server omits the Domain attribute, the user agent will return the cookie only to the origin server。但不能将一个cookie的域设置成服务器所在的域之外的域 
    The user agent will reject cookies unless the Domain attribute specifies a scope for the cookie that would include the origin server. For example, the user agent will accept a cookie with a Domain attribute of "example.com" or of "foo.example.com" from foo.example.com, but the user agent will not accept a cookie with a Domain attribute of "bar.example.com" or of "baz.foo.example.com". NOTE: For security reasons, many user agents are configured to reject Domain attributes that correspond to "public suffixes". For example, some user agents will reject Domain attributes of "com" or "co.uk".
    When a user agent receives a Set-Cookie header field in an HTTP response, the user agent MAY ignore the Set-Cookie header field in its entirety. For example, the user agent might wish to block responses to "third-party" requests from setting cookies。

    2.5)secure:它指定了在网络上如何传输cookie值。默认情况下,cookie是不安全的,也就是说,他们是通过一个普通的、不安全 的http链接传输的。但是如果将cookie标记为安全的,那么它将只在浏览器和服务器通过https或其他安全协议链接是才被传输。这个属性只能保证cookie是保密的

    The Secure attribute limits the scope of the cookie to "secure" channels (where "secure" is defined by the user agent). When a cookie has the Secure attribute, the user agent will include the cookie in an HTTP request only if the request is transmitted over a secure channel (typically HTTP over Transport Layer Security (TLS)

    2.6)HttpOnly:设为true后,只能通过http访问,不能通过document.cookie获取设定为httponly的键值,防止xss读取cookie。

    httpOnly属性和secure是独立的,一个cookie可以同时设置这两个属性。
    The HttpOnly attribute limits the scope of the cookie to HTTP requests. In particular, the attribute instructs the user agent to omit the cookie when providing access to cookies via "non-HTTP" APIs (such as a web browser API that exposes cookies to scripts). Note that the HttpOnly attribute is independent of the Secure attribute: a cookie can have both the HttpOnly and the Secure attribute.

    2.7)cookie属性其他相关内容

    User agents ignore unrecognized cookie attributes (but not the entire cookie).
    To maximize compatibility with user agents, servers that wish to store arbitrary data in a cookie-value SHOULD encode that data, for example, using Base64 [RFC4648].
    To maximize compatibility with user agents, servers SHOULD NOT produce two attributes with the same name in the same set-cookie-string.
    If the user agent receives a new cookie with the same cookie-name, domain-value, and path-value as a cookie that it has already stored, the existing cookie is evicted and replaced with the new cookie. Notice that servers can delete cookies by sending the user agent a new cookie with an Expires attribute with a value in the past.

    3.cookie值在何处设置

    通常cookie值是在服务端设置,但也可以通过js在客户端设置,另外
    3.1)编码方式(Java中的httpclient包)的http请求可以直接在请求头上加入cookie;
    3.2)iOS的UIWebview可以在loadRequest构造带cookie的reqeust;
    3.3)Android的Webview可以通过CookieManager来设置cookie;

    4.cookie如何传输及规则

    4.1服务端—》客户端

    通过http的response头,会将服务端设置的所有的cookie都发送到客户端,发送的内容是cookie的name、value及已设置的全部属性

    4.2cookie属性其他相关内容

    通过http的request头,浏览器也不是发送它所接收到的所有Cookie,它会检查当前要请求的域名以及目录, 只要这二项目与Cookie对应的Domain和Path匹配,才会发送。对于Domain则是按照尾部匹配的原则进行的。发送的内容只有name和value,其他的属性是不发送的。
    Each cookie-pair represents a cookie stored by the user agent. The cookie-pair contains the cookie-name and cookie-value the user agent received in the Set-Cookie header.
    Notice that the cookie attributes are not returned.
    因而当客户端发送两个同名的cookie时,服务端是无法区分这两个cookie的归属。
    Although cookies are serialized linearly in the Cookie header, servers SHOULD NOT rely upon the serialization order. In particular, if the Cookie header contains two cookies with the same name (e.g., that were set with different Path or Domain attributes), servers SHOULD NOT rely upon the order in which these cookies appear in the header.

    5.cookie是否可以被截获

    有两种方法可以截获他人的cookie,
    5.1). 通过XSS脚步攻击, 获取他人的cookie
    5.2.) 想办法获取别人电脑上保存的cookie文件(这个比较难)

    6.cookie是否可以被非法修改

    可以通过一些插件(如edit this cookie)或者其他技术手段进行修改。Secure属性也有其局限性。
    Although seemingly useful for protecting cookies from active network attackers, the Secure attribute protects only the cookie’s confidentiality. An active network attacker can overwrite Secure cookies from an insecure channel, disrupting their integrity

    参考资料

  • 相关阅读:
    Flutter之CupertinoSwitch和Switch开关组件的简单使用
    docker的/var/run/docker.sock参数
    Elasticsearch _reindex Alias使用
    json_decode的结果是null
    1.1-1.4 hadoop调度框架和oozie概述
    1.8-1.10 大数据仓库的数据收集架构及监控日志目录日志数据,实时抽取之hdfs系统上
    1.6-1.7 定义agent 读取日志存入hdfs
    zabbix监控华为交换机
    1.1-1.5 flume架构概述及安装使用
    1.16 sqoop options-file参数进行运行任务
  • 原文地址:https://www.cnblogs.com/timssd/p/4898276.html
Copyright © 2011-2022 走看看