zoukankan      html  css  js  c++  java
  • 11.字符串{a,b}的幂集[回溯递归]

    我一直在想着这个事,早晨起来五六点,躺在床上冥想。突然悟解了,真如某些书上写的,大道不过三言两语,说破一文不值。
    还是按照老方法,把问题最大程度的精简,现在求集合A={a,b}的幂集,只有两个元素,应该有{a,b},{a},{b},{x}四种可能。如果把这两个元素弄清楚了,其余的也都一样, 仅仅是数量增大了一些。
    现在用两个数组,A是原集,B存放子集。关键是约束条件,就是边界如何界定。先这样考虑,先在B集合中放入一个元素,再放入一个元素,已经不能再放了,因为A集只有两个元素,就像是手中只有两个球,都拿出去就没有了,所以这里把约束条件定为,只要拿出去的数量>=实际数量就返回。

    如图所示,这里用的是下标,所以第一次拿出a时,i=0,(以后类同),再放一个,i=1,企图再放一个i=2时已经触到边界,因为拿出去的数量已经最大。到此返回,打印结果,于是得到一个集合{a,b}。

    接着,出现了转移。假如把第二个字符b收回(相当于没放),虽然没放东西,但是经过了一步,于是接着得到i=2,又触到边界,打印结果返回,结果得到集合{a}。
    这就类似于树的先序遍历,如果是先序遍历的思路,剩下的就容易理解,因为先序的返回顺序是简易的,现在i=1的情况已经穷尽,也就是左右子树都已经返回,下一步就转移到根结点,也就是i=0时的情况。

    同样,由于是递归,所以把a也舍去,然后遍历根的右子树,进行i=1计算。

    void f(int i,char A[],int n)
    {
        char x;
        int k;
        if(i>=n)
        {
            if(B[0])
            cout<<'{'<<B<<'}'<<endl;
            else
            cout<<'x'<<endl;
        }
        else
        {
            x=A[i];
            k=strlen(B);
            B[k]=x;
            f(i+1,A,3);
            B[k]=0;
            f(i+1,A,3);
        }
    }

    i=1的计算如下:
    由于舍去a,相当于集合B没有放入一个元素,长度为0,因此,进入函数f(1)时,把A集合的第二个元素,也就是b放了B[k],也就是B[0]中。

    再进入,i=2时,触到边界返回。这只是f(1)的左子树,接着进入右子树,同样,把b舍去,也即b[k]=0,(b[0]=0),进入f(2),由于集合B完全为空,所以最后打印空集'x'。

    到这时,f(0)所调用的函数,左子树和右子树都已经返回,函数结束,打印的顺序为,ab,a,b,x。
    这种回溯算法,初次接触会有些绕,不要用一大堆数据,把它简化成最简易的形式,递归调用步数少的演示一番,就容易看的明白。

    这题的关键有两条,第一,划定边界,也就是什么条件下递归结束。第二,在递归过程中间,返回的时候需要处理什么事,也就是所谓的回溯!比如这段代码中的b[k]=0,是最关键的一步,也就是舍去某些元素!

  • 相关阅读:
    Jzoj4822 完美标号
    Jzoj4822 完美标号
    Jzoj4792 整除
    Jzoj4792 整除
    Educational Codeforces Round 79 A. New Year Garland
    Good Bye 2019 C. Make Good
    ?Good Bye 2019 B. Interesting Subarray
    Good Bye 2019 A. Card Game
    力扣算法题—088扰乱字符串【二叉树】
    力扣算法题—086分隔链表
  • 原文地址:https://www.cnblogs.com/tinaluo/p/5294341.html
Copyright © 2011-2022 走看看