zoukankan      html  css  js  c++  java
  • 第一次编程作业

    function A = warmUpExercise()
    %WARMUPEXERCISE Example function in octave
    %   A = WARMUPEXERCISE() is an example function that returns the 5x5 identity matrix
    
    A = [];
    % ============= YOUR CODE HERE ==============
    % Instructions: Return the 5x5 identity matrix 
    %               In octave, we return values by defining which variables
    %               represent the return values (at the top of the file)
    %               and then set them accordingly. 
    
    
    
    A = eye(5);
    
    
    
    % ===========================================
    
    
    end

    function J = computeCost(X, y, theta) %COMPUTECOST Compute cost for linear regression % J = COMPUTECOST(X, y, theta) computes the cost of using theta as the % parameter for linear regression to fit the data points in X and y % Initialize some useful values m = length(y); % number of training examples % You need to return the following variables correctly J = 0; % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost of a particular choice of theta % You should set J to the cost. predictions = X*theta; sqrErrors = (predictions - y) .^2;%每个元素取平方 J = 1/(2*m) *sum(sqrErrors); % ========================================================================= end
    function plotData(x, y)
    %PLOTDATA Plots the data points x and y into a new figure 
    %   PLOTDATA(x,y) plots the data points and gives the figure axes labels of
    %   population and profit.
    
    figure; % open a new figure window
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Plot the training data into a figure using the 
    %               "figure" and "plot" commands. Set the axes labels using
    %               the "xlabel" and "ylabel" commands. Assume the 
    %               population and revenue data have been passed in
    %               as the x and y arguments of this function.
    %
    % Hint: You can use the 'rx' option with plot to have the markers
    %       appear as red crosses. Furthermore, you can make the
    %       markers larger by using plot(..., 'rx', 'MarkerSize', 10);
    
    plot(x,y,'rx','MarkerSize',10);% rx 红色的 叉号 ‘x’。大小为10
    ylabel('Profit in $10,000s');
    xlabel('population of City in 10,000s');
    
    
    
    % ============================================================
    
    end

    执行ex1 回依次执行所有不得.m文件,直至结束。若想中途停止shift+ctrl+c
    function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
    %GRADIENTDESCENT Performs gradient descent to learn theta
    %   theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by 
    %   taking num_iters gradient steps with learning rate alpha
    
    % Initialize some useful values
    m = length(y); % number of training examples
    J_history = zeros(num_iters, 1);
    
    for iter = 1:num_iters
    
        % ====================== YOUR CODE HERE ======================
        % Instructions: Perform a single gradient step on the parameter vector
        %               theta. 
        %
        % Hint: While debugging, it can be useful to print out the values
        %       of the cost function (computeCost) and gradient here.
        %
    
        theta1=theta(1,1)-alpha/m*sum(X*theta-y);
        theta2=theta(2,1)-alpha/m*sum((X*theta-y) .* X(:,2));
        theta(1,1)=theta1;
        theta(2,1)=theta2;
    
    
        % ============================================================
    
        % Save the cost J in every iteration    
        J_history(iter) = computeCost(X, y, theta);
    
    end
    
    end

    function [X_norm, mu, sigma] = featureNormalize(X)
    %FEATURENORMALIZE Normalizes the features in X 
    %   FEATURENORMALIZE(X) returns a normalized version of X where
    %   the mean value of each feature is 0 and the standard deviation
    %   is 1. This is often a good preprocessing step to do when
    %   working with learning algorithms.
    
    % You need to set these values correctly
    X_norm = X;
    mu = zeros(1, size(X, 2));
    sigma = zeros(1, size(X, 2));
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: First, for each feature dimension, compute the mean
    %               of the feature and subtract it from the dataset,
    %               storing the mean value in mu. Next, compute the 
    %               standard deviation of each feature and divide
    %               each feature by it's standard deviation, storing
    %               the standard deviation in sigma. 
    %
    %               Note that X is a matrix where each column is a 
    %               feature and each row is an example. You need 
    %               to perform the normalization separately for 
    %               each feature. 
    %
    % Hint: You might find the 'mean' and 'std' functions useful.
    %       
    
    m = size(X,2)%列数
    for i=1:m,
       mu(i)=mean(X(:,i))%X第i列的平均数
       sigma(i) =std(X(:,i))%X第i列的标准差
    end
    
    X_norm =(X_norm-mu)./sigma;%这里同样是对应元素的运算
    
    % ============================================================
    
    end

    元素间的加减,点乘、除要保证列数一致
    >> A =[1 2;3 4;5 6]
    A =
       1   2
       3   4
       5   6
    >> B = [1 2]
    B =
       1   2
    >> A-B
    ans =
       0   0
       2   2
       4   4
    >> A./B
    ans =
       1   1
       3   2
       5   3
     
    function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
    %GRADIENTDESCENTMULTI Performs gradient descent to learn theta
    %   theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by
    %   taking num_iters gradient steps with learning rate alpha
    
    % Initialize some useful values
    m = length(y); % number of training examples
    J_history = zeros(num_iters, 1);
    temp = theta;
    for iter = 1:num_iters
    
        % ====================== YOUR CODE HERE ======================
        % Instructions: Perform a single gradient step on the parameter vector
        %               theta. 
        %
        % Hint: While debugging, it can be useful to print out the values
        %       of the cost function (computeCostMulti) and gradient here.
        %
        for i =1:length(theta),
            temp(i,1) = temp(i,1)-alpha/m*sum((X*theta-y).*X(:,i));
        end
        theta = temp;    
    
        % ============================================================
    
        % Save the cost J in every iteration    
        J_history(iter) = computeCostMulti(X, y, theta);
    
    end
    
    end
     
    length(v) 这个命令将返回 最大维度的大小
    function [theta] = normalEqn(X, y)
    %NORMALEQN Computes the closed-form solution to linear regression 
    %   NORMALEQN(X,y) computes the closed-form solution to linear 
    %   regression using the normal equations.
    
    theta = zeros(size(X, 2), 1);
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Complete the code to compute the closed form solution
    %               to linear regression and put the result in theta.
    %
    
    % ---------------------- Sample Solution ----------------------
    
    theta = pinv(X'*X)*X'*y;
    
    
    % -------------------------------------------------------------
    
    
    % ============================================================
    
    end
    function J = computeCostMulti(X, y, theta)
    %COMPUTECOSTMULTI Compute cost for linear regression with multiple variables
    %   J = COMPUTECOSTMULTI(X, y, theta) computes the cost of using theta as the
    %   parameter for linear regression to fit the data points in X and y
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0;
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost of a particular choice of theta
    %               You should set J to the cost.
    
    predictions = X*theta;
    sqrErrors = (predictions -y).^2;
    J = 1/(2*m)*sum(sqrErrors);
    
    
    
    % =========================================================================
    
    end

      

  • 相关阅读:
    测试次数--蓝桥杯
    承压计算--蓝桥杯
    天梯赛--连续因子
    等差素数数列-蓝桥杯
    hdu-1237-简单计算器
    hdu-1022-栈
    [BZOJ3172]:[Tjoi2013]单词(AC自动机)
    [BZOJ4327]:[JZOI2012]玄武密码(AC自动机)
    [HDU5360]:Gorgeous Sequence(小清新线段树)
    [BZOJ3307]:雨天的尾巴(LCA+树上差分+权值线段树)
  • 原文地址:https://www.cnblogs.com/tingtin/p/12043503.html
Copyright © 2011-2022 走看看