zoukankan      html  css  js  c++  java
  • ZJU-ICPC Summer 2020 Contest 9 F-FFT

    引用博客:
    带边数的无向连通图计数

    Pretty is a smart girl who loves math very much.

    She has already learned FFT algorithm.

    She loves traveling and she is looking forward to visiting more cities.

    A country is defined as Pretty Country if and only if every two cities in the country have a path.

    Notice the road is biconditional.

    Given the number of roads m and the number of cities (n), Pretty wants to know the number of Pretty Country.

    Since the number may be very big, please mod (998244353).

    Here mod means modulo operation.

    Input
    One line containing an integer (n). ((1 leq n leq 100))
    (m) is (0,1,2,3,dots, frac{n(n-1)}{2}).

    Output
    (frac{n(n-1)}{2}) lines.

    The number means the answer.

    Examples
    inputCopy
    2
    outputCopy
    0
    1
    inputCopy
    5
    outputCopy
    0
    0
    0
    0
    125
    222
    205
    120
    45
    10
    1

    
    #include<bits/stdc++.h>
    using namespace std;
    
    #define d(x) ( x * (x - 1) / 2)
    
    const int mod = 998244353;
    
    int n;
    long long H[105][5000],F[5000];
    long long fac[5005],inv[5005];
    
    long long ksm(long long x,long long y){
        long long z = 1; 
        while(y){
            if(y & 1) z = z * x % mod;
            y >>= 1;
            x = x * x % mod;
        }
        return z;
    }
    long long C(int n,int m){
        if(n < m || m < 0) return 0;
        if(n == m || m == 0) return 1;
        return fac[n] * inv[m] % mod * inv[n - m] % mod;
    }
    
    int main(){
        fac[0] = 1; for(int i = 1; i <= 5000; ++ i) fac[i] = fac[i - 1] * i % mod;
        inv[5000] = ksm(fac[5000],mod - 2); for(int i = 4999; i >= 0; -- i) inv[i] = inv[i + 1] * (i + 1) % mod;
         
        scanf("%d",&n);
        for(int i = 1; i <= n; ++ i) H[i][d(i)] = 1;
        for(int i = 1; i <= n; ++ i)
        for(int j = d(i); j >= 0; -- j){
            if(H[i][j]){
                for(int k = 1; i + k <= n; ++ k){
                    H[i + k][j + d(k)] += mod - H[i][j] * C(i + k - 1, k) % mod; H[i + k][j + d(k)] %= mod;
                }
            }
        }
        for(int j = 0; j <= d(n); ++ j){
            for(int k = j; k <= d(n); ++ k)
            F[j] += H[n][k] * C(k,j) % mod , F[j] %= mod;
            
            F[j] = (F[j] % mod + mod) % mod;
            printf("%lld
    ",F[j]);
        }
        
        return 0;
    }
    
    
  • 相关阅读:
    MVC 学习(二)之Linq to Sql 简单Demo
    MVC 学习(一)Linq to Entities 简单Demo
    MVC学习(三)Code-First Demo
    pickle 模块
    json 模块
    sys 模块
    os 模块
    random(随机)模块
    time 模块
    python之函数基础
  • 原文地址:https://www.cnblogs.com/zzhzzh123/p/13386139.html
Copyright © 2011-2022 走看看