zoukankan      html  css  js  c++  java
  • 树上任意两点间距离

    //  

    任意两点间有唯一路径的无向图是树

    //HDU   6446

    Tree and Permutation

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 1192    Accepted Submission(s): 432


    Problem Description
    There are N vertices connected by N1 edges, each edge has its own length.
    The set { 1,2,3,,N } contains a total of N! unique permutations, let’s say the i-th permutation is Pi and Pi,j is its j-th number.
    For the i-th permutation, it can be a traverse sequence of the tree with N vertices, which means we can go from the Pi,1-th vertex to the Pi,2-th vertex by the shortest path, then go to the Pi,3-th vertex ( also by the shortest path ) , and so on. Finally we’ll reach the Pi,N-th vertex, let’s define the total distance of this route as D(Pi) , so please calculate the sum of D(Pi) for all N! permutations.
     
    Input
    There are 10 test cases at most.
    The first line of each test case contains one integer N ( 1N105 ) .
    For the next N1 lines, each line contains three integer XY and L, which means there is an edge between X-th vertex and Y-th of length L ( 1X,YN,1L109 ) .
     
    Output
    For each test case, print the answer module 109+7 in one line.
     
    Sample Input
    3 1 2 1 2 3 1 3 1 2 1 1 3 2
     
    Sample Output
    16 24
     
     
     
    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <cstdlib>
    #include <cstring>
    #include <string>
    #include <deque>
    using namespace std;
    #define  ll long long 
    #define  N 100009
    #define  mod  1000000007
    #define  gep(i,a,b)  for(int  i=a;i<=b;i++)
    #define  gepp(i,a,b) for(int  i=a;i>=b;i--)
    #define  gep1(i,a,b)  for(ll i=a;i<=b;i++)
    #define  gepp1(i,a,b) for(ll i=a;i>=b;i--)    
    #define  mem(a,b)  memset(a,b,sizeof(a))
    #define  lowbit(x) x&(-x)
    int n,head[N],cnt;
    ll sum[N];
    ll ret,ans;
    ll  f[N];
    struct M{
        int u,v,w,nex;
    }e[N<<1];//无向图*2,易错。
    void add(int u,int v,int w){
        e[cnt].u=u;
        e[cnt].v=v;
        e[cnt].w=w;
        e[cnt].nex=head[u];
        head[u]=cnt++;
    }
    void dfs(int u,int fa)
    {
        sum[u]=1ll;
        for(int i=head[u];i!=-1;i=e[i].nex){
            int v=e[i].v;
            int w=e[i].w;
            if(v==fa) continue;
            dfs(v,u);
            sum[u]+=sum[v];
            /*
            我们可以对每条边,求所有可能的路径经过此边的次数:
            设这条边两端的点数分别为A和B,那么这条边被经过的次数就是A*B,
            它对总的距离和的贡献就是(A*B*此边长度)。
            */
            ret=(ret+sum[v]*(n-sum[v])%mod*w%mod)%mod;
        }
    }
    void init()
    {
        f[0]=1ll;
        gep(i,1,N){
            f[i]=(f[i-1]*i)%mod;
        }
    }
    int main()
    {
        init();
        while(~scanf("%d",&n)){
            cnt=0;
            int u,v,w;
            mem(head,-1);
            mem(sum,0);
            gep(i,1,n-1){
                scanf("%d%d%d",&u,&v,&w);
                add(u,v,w);
                add(v,u,w);//必须无向图
            }
            ret=0;
            dfs(1,0);
            /*
            (n-1)*n!/(C(n,2)) =2*(n-1)! 
            如 
                1 2 3
                1 3 2
                2 1 3 
                2 3 1
                3 1 2
                3 2 1
             (1,2) ,(1,3) ,(2,3) 都有4次(2*2!) 
             而走完一次 (1,2) ,(1,3) ,(2,3)需要的花费(即树上任意两点的路径都走一次)
             为 ret ,那么ret*2*(n-1)!就是答案
            */
            ans=2*ret%mod*f[n-1]%mod;
            printf("%lld
    ",ans);
        }
        return 0;
    }

    //HDU  2376

    Average distance

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1327    Accepted Submission(s): 479
    Special Judge


    Problem Description
    Given a tree, calculate the average distance between two vertices in the tree. For example, the average distance between two vertices in the following tree is (d01 + d02+ d03 + d04 + d12 +d13 +d14 +d23 +d24 +d34)/10 = (6+3+7+9+9+13+15+10+12+2)/10 = 8.6.



     
    Input
    On the first line an integer t (1 <= t <= 100): the number of test cases. Then for each test case: 

    One line with an integer n (2 <= n <= 10 000): the number of nodes in the tree. The nodes are numbered from 0 to n - 1. 

    n - 1 lines, each with three integers a (0 <= a < n), b (0 <= b < n) and d (1 <= d <= 1 000). There is an edge between the nodes with numbers a and b of length d. The resulting graph will be a tree. 

     
    Output
    For each testcase: 

    One line with the average distance between two vertices. This value should have either an absolute or a relative error of at most 10-6

     
    Sample Input
    1
    5
    0 1 6
    0 2 3
    0 3 7
    3 4 2
     
    Sample Output
    8.6
     
     
     
     1 int t,n;
     2 int head[N],cnt;
     3 double ret,ans,sum[N];
     4 struct M{
     5     int u,v,w,nex;
     6 }e[N<<1];
     7 void  add(int u,int v,int w)
     8 {
     9     e[cnt].u=u;
    10     e[cnt].v=v;
    11     e[cnt].w=w;
    12     e[cnt].nex=head[u];
    13     head[u]=cnt++;   
    14 }
    15 void dfs(int u,int fa)
    16 {
    17     sum[u]=1;
    18     for(int i=head[u];i!=-1;i=e[i].nex)
    19     {
    20        int v=e[i].v;
    21        int w=e[i].w;
    22        if(v==fa) continue;
    23           dfs(v,u);  
    24        sum[u]+=sum[v];
    25        ret=ret+sum[v]*(n-sum[v])*w;
    26     }
    27 }
    28 int main()
    29 {
    30     scanf("%d",&t);
    31     while(t--)
    32     {
    33         scanf("%d",&n);
    34         mem(head,-1);
    35         mem(sum,0);
    36         cnt=0;
    37         int u,v,w;
    38         gep(i,1,n-1){
    39             scanf("%d%d%d",&u,&v,&w);
    40             add(u,v,w);
    41             add(v,u,w);
    42         }
    43         ret=0;
    44         dfs(0,-1);
    45         ans=2.0*ret/(n*(n-1)*1.0);
    46         printf("%.7f
    ",ans);
    47     }
    48     return 0;
    49 }
  • 相关阅读:
    修改MFC标题栏上的图标
    【转】子窗口刷新父窗口的问题
    水晶报表添加引用
    【转】MetadataType的使用,MVC的Model层数据验证
    poj 1556 The Doors 线段相交判断+最短路
    poj 1269 Intersecting Lines 求直线交点 判断直线平行共线
    string 函数操作
    poj 1066 Treasure Hunt 线段相交判断
    poj 1410 Intersection 线段相交判断
    poj 3347 Kadj Squares 扩大数据化整数
  • 原文地址:https://www.cnblogs.com/tingtin/p/9545651.html
Copyright © 2011-2022 走看看