1. 问题
对n个不同的数构成的数组A[1..n]进行排序,其中n=2^k;
2. 解析
3. 设计
(1) 将待排序序列从中间一分为二,对左右两边再进行递归分割操作,得到n个相互独立的子序列;
(2) 对n个独立的子序列递归的执行合并操作,最终得到有序的序列
4. 分析
将k=logn和W(1)=0带入得出复杂度为nlogn
5. 源码
https://github.com/Tinkerllt/algorithm-work.git
1 #include<stdio.h> 2 #include<iostream> 3 #include<cmath> 4 #include<cstring> 5 #include<algorithm> 6 #include<bitset> 7 #include<set> 8 #include<deque> 9 #include<queue> 10 #include<vector> 11 //#include<unordered_map> 12 #include<map> 13 #include<stack> 14 using namespace std; 15 #define ll long long 16 #define ull unsigned long long 17 #define pii pair<int,int> 18 #define Pii pair<ll,ll> 19 #define m_p make_pair 20 #define l_b lower_bound 21 #define u_b upper_bound 22 const int inf=0x3f3f3f3f; 23 const ll linf=0x3f3f3f3f3f3f3f3f; 24 const int maxn=3e5+11; 25 const int maxm=2e3+11; 26 const int mod=1e9+7; 27 const double eps=1e-5; 28 ll rd(){ll x = 0, f = 1; char ch = getchar();while (ch<'0' || ch>'9') { if (ch == '-')f = -1; ch = getchar(); }while (ch >= '0'&&ch <= '9') { x = x * 10 + ch - '0'; ch = getchar(); }return x * f;} 29 inline ll qpow(ll a,ll b,ll p){ll res=1;while(b){if(b&1){res*=a;res%=p;}b>>=1;a=a*a%p;}return res;} 30 inline ll gcd(ll a,ll b){if(b==0) return a;return gcd(b,a%b);} 31 //iterator 32 //head 33 //priority_queue 34 void merge(int *data,int start,int end,int *result) 35 { 36 int left_length = (end - start + 1) / 2 + 1;//左部分区间的数据元素的个数 37 int left_index = start; 38 int right_index = start + left_length; 39 int result_index = start; 40 while(left_index < start + left_length && right_index < end+1) 41 { 42 //对分别已经排好序的左区间和右区间进行合并 43 if(data[left_index] <= data[right_index]) 44 result[result_index++] = data[left_index++]; 45 else 46 result[result_index++] = data[right_index++]; 47 } 48 while(left_index < start + left_length) 49 result[result_index++] = data[left_index++]; 50 while(right_index < end+1) 51 result[result_index++] = data[right_index++]; 52 } 53 void merge_sort(int *data, int start, int end, int *result) 54 { 55 if(1 == end - start)//如果区间中只有两个元素,则对这两个元素进行排序 56 { 57 if(data[start] > data[end]) 58 { 59 int temp = data[start]; 60 data[start] = data[end]; 61 data[end] = temp; 62 } 63 return; 64 } 65 else if(0 == end - start)//如果只有一个元素,则不用排序 66 return; 67 else 68 { 69 //继续划分子区间,分别对左右子区间进行排序 70 merge_sort(data,start,(end-start+1)/2+start,result); 71 merge_sort(data,(end-start+1)/2+start+1,end,result); 72 //开始归并已经排好序的start到end之间的数据 73 merge(data,start,end,result); 74 //把排序后的区间数据复制到原始数据中去 75 for(int i = start;i <= end;++i) 76 data[i] = result[i]; 77 } 78 } 79 int main(){ 80 //std::ios::sync_with_stdio(false); 81 int n=rd(); 82 int data[100]; 83 int result[100]; 84 for(int i=0;i<n;i++){ 85 data[i]=rd(); 86 } 87 cout << "Before sorted:" << endl; 88 for(int i = 0;i < n;++i) 89 cout << data[i] << " "; 90 cout << endl; 91 cout << "After sorted:" << endl; 92 merge_sort(data,0,n-1,result); 93 for(int i = 0;i < n;++i) 94 cout << data[i] << " "; 95 cout << endl; 96 }