zoukankan      html  css  js  c++  java
  • scrapy框架的另一种分页处理以及mongodb的持久化储存以及from_crawler类方法的使用

    一.scrapy框架处理

      1.分页处理

        以爬取亚马逊为例

        爬虫文件.py

    # -*- coding: utf-8 -*-
    import scrapy
    from Amazon.items import AmazonItem
    
    class AmazonSpider(scrapy.Spider):
        name = 'amazon'
        allowed_domains = ['www.amazon.cn']
        start_urls = ['www.amazon.cn']
    
        def start_requests(self):
            # 重写父类方法,拿到商品搜索页
            url = 'https://www.amazon.cn/s/ref=nb_sb_noss?__mk_zh_CN=亚马逊网站&url=search-alias%3Daps&field-keywords=iphone+-xs&rh=i%3Aaps%2Ck%3Aiphone+-xs&ajr=0'
            yield scrapy.Request(url=url, callback=self.parse)
    
        def parse(self, response):
            # 解析每一个商品的url
            links = response.xpath('//*[contains(@id,"result_")]/div/div[3]/div[1]/a/@href').extract()
            # 同时拿到下一页的连接
            next_page_url = response.xpath('//a[@id="pagnNextLink"]/@href').extract_first()
            print('>>>>>>>>>>>>>', next_page_url)
            # 再对这些每一个商品的url进行请求
            for link in links:
                yield scrapy.Request(url=link, callback=self.parse_detail)
    
            #分页处理
            # 把所有的商品详情遍历完了之后,再判断是否有下一页,有下一页就继续对下一页发起请求
            if next_page_url:
                scrapy.Request(url=next_page_url, callback=self.parse)
    
        def parse_detail(self, response):
            #每个商品的详情页解析出我们要的数据
            title = response.xpath('//*[@id="productTitle"]/text()').extract_first().strip()
            price = (response.xpath("//*[@id='priceblock_ourprice']/text()") or response.xpath(
                "//*[@id='priceblock_saleprice']/text()")).extract_first().strip()
            deliver = response.xpath('//*[@id="ddmMerchantMessage"]/*[1]/text()').extract_first().strip()
    
            #把数据装到容器里面
            item=AmazonItem()
            item['title']=title
            item['price']=price
            item['deliver']=deliver
            #记得返回,否则管道接不到
            yield item

      2.mongodb持久化储存以及from_crawl的使用

        pipelines.py

    # -*- coding: utf-8 -*-
    
    # Define your item pipelines here
    #
    # Don't forget to add your pipeline to the ITEM_PIPELINES setting
    # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html
    
    import pymongo
    class AmazonPipeline(object):
    
        @classmethod
        def from_crawler(cls, crawler):
            """
            Scrapy会先通过getattr判断我们是否自定义了from_crawler,有则调它来完
            成实例化,早于__init__方法执行
         自己要的参数要去settings.py文件配置     """ HOST = crawler.settings.get('HOST') PORT = crawler.settings.get('PORT') USER = crawler.settings.get('USER') PWD = crawler.settings.get('PWD') DB = crawler.settings.get('DB') TABLE = crawler.settings.get('TABLE') return cls(HOST, PORT, USER, PWD, DB, TABLE)
    def __init__(self,host,port,user,pwd,db,table): self.host=host self.port=port self.user=user self.pwd=pwd self.db=db self.table=table def open_spider(self,spider): #程序运行时执行一次 self.client=pymongo.MongoClient(host=self.host,port=self.port) def process_item(self, item, spider): dic_item=dict(item) if dic_item: self.client[self.db][self.table].save(dic_item) return item def close_spider(self,spider): #程序关闭时候执行一次 self.client.close()

      settings.py

    # -*- coding: utf-8 -*-
    
    # Scrapy settings for Amazon project
    #
    # For simplicity, this file contains only settings considered important or
    # commonly used. You can find more settings consulting the documentation:
    #
    #     https://doc.scrapy.org/en/latest/topics/settings.html
    #     https://doc.scrapy.org/en/latest/topics/downloader-middleware.html
    #     https://doc.scrapy.org/en/latest/topics/spider-middleware.html
    
    BOT_NAME = 'Amazon'
    
    SPIDER_MODULES = ['Amazon.spiders']
    NEWSPIDER_MODULE = 'Amazon.spiders'
    
    
    # Crawl responsibly by identifying yourself (and your website) on the user-agent
    USER_AGENT = 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.26 Safari/537.36'
    
    # Obey robots.txt rules
    ROBOTSTXT_OBEY = False
    
    # Configure maximum concurrent requests performed by Scrapy (default: 16)
    #CONCURRENT_REQUESTS = 32
    
    # Configure a delay for requests for the same website (default: 0)
    # See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay
    # See also autothrottle settings and docs
    #DOWNLOAD_DELAY = 3
    # The download delay setting will honor only one of:
    #CONCURRENT_REQUESTS_PER_DOMAIN = 16
    #CONCURRENT_REQUESTS_PER_IP = 16
    
    # Disable cookies (enabled by default)
    #COOKIES_ENABLED = False
    
    # Disable Telnet Console (enabled by default)
    #TELNETCONSOLE_ENABLED = False
    
    # Override the default request headers:
    #DEFAULT_REQUEST_HEADERS = {
    #   'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
    #   'Accept-Language': 'en',
    #}
    
    # Enable or disable spider middlewares
    # See https://doc.scrapy.org/en/latest/topics/spider-middleware.html
    #SPIDER_MIDDLEWARES = {
    #    'Amazon.middlewares.AmazonSpiderMiddleware': 543,
    #}
    
    # Enable or disable downloader middlewares
    # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html
    DOWNLOADER_MIDDLEWARES = {
       'Amazon.middlewares.AmazonDownloaderMiddleware': 543,
    }
    
    # Enable or disable extensions
    # See https://doc.scrapy.org/en/latest/topics/extensions.html
    #EXTENSIONS = {
    #    'scrapy.extensions.telnet.TelnetConsole': None,
    #}
    
    # Configure item pipelines
    # See https://doc.scrapy.org/en/latest/topics/item-pipeline.html
    ITEM_PIPELINES = {
       'Amazon.pipelines.AmazonPipeline': 300,
    }
    
    # Enable and configure the AutoThrottle extension (disabled by default)
    # See https://doc.scrapy.org/en/latest/topics/autothrottle.html
    #AUTOTHROTTLE_ENABLED = True
    # The initial download delay
    #AUTOTHROTTLE_START_DELAY = 5
    # The maximum download delay to be set in case of high latencies
    #AUTOTHROTTLE_MAX_DELAY = 60
    # The average number of requests Scrapy should be sending in parallel to
    # each remote server
    #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
    # Enable showing throttling stats for every response received:
    #AUTOTHROTTLE_DEBUG = False
    
    # Enable and configure HTTP caching (disabled by default)
    # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
    #HTTPCACHE_ENABLED = True
    #HTTPCACHE_EXPIRATION_SECS = 0
    #HTTPCACHE_DIR = 'httpcache'
    #HTTPCACHE_IGNORE_HTTP_CODES = []
    #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
    
    
    ###MONGODB的配置
    HOST='127.0.0.1'
    PORT=27017
    USER='root'
    PWD=''
    DB='amazon'
    TABLE='goods'
    View Code

    二.补充一个小技巧

      一直在命令行启动爬虫文件就很累了,可以这么做

      在爬虫项目的根目录直接写一个.py文件,加入如下内容

    #第一个,第二不变,第三个是爬虫文件名称,也可以加第四个,--nolog不达意你日志
    from
    scrapy.cmdline import execute execute(['scrapy', 'crawl', 'amazon'])

      

  • 相关阅读:
    如何安装树莓派虚拟机
    树莓派3用create_ap变身无线AP
    Centos 安装golang beego
    Lua中调用C函数
    C++ 用libcurl库进行http通讯网络编程(转)
    SkipList 跳表
    ntohs, ntohl, htons,htonl的比较和详解【转】
    SQLITE3 使用总结(转)
    mysql基础认识1
    mysql 数据类型
  • 原文地址:https://www.cnblogs.com/tjp40922/p/10493354.html
Copyright © 2011-2022 走看看