zoukankan      html  css  js  c++  java
  • 实战小项目之基于yolo的目标检测web api实现

      上个月,对微服务及web service有了一些想法,看了一本app后台开发及运维的书,主要是一些概念性的东西,对service有了一些基本了解。互联网最开始的构架多是cs构架,浏览器兴起以后,变成了bs,最近几年,随着移动互联网的兴起,cs构架再次火了起来,有了一个新的概念,web service。

      最近两天,想结合自己这段时间学的东西,实现一个cs构架的service接口。说一下大体流程,client上传图片到http服务器,http后台使用yolo进行图片的检测,之后将检测结果封装成json返回到client,client进行解析显示。

    client

      使用libcurl作为http请求工具,使用rapidjson进行结果json数据的解析

      上传图片时,没有使用标准的http多媒体方式,而是使用post 二进制流的方式,比较笨,有待改进。

    server

      物体检测识别使用yolo c语言版本,修改原工程darknet的main,引入自己的main,实现直接检测的功能,main的流程:

    导入yolo参数--必要初始化--fork子进程--安装信号--初始化fifo--sleep等待图片上传           接收信号唤醒--读取图像--预测-写入json文件--fifo写唤醒子进程

                 |                             |                   |

               执行libevent实现的http server--eventloop监听--有文件上传结束--signal 父进程--阻塞在fifo读                         读取json,http返回

    具体代码

    client

    extern "C"{
    #include <unistd.h>
    #include <sys/types.h>
    #include <time.h>
    #include <errno.h>
    #include <stdio.h>
    #include <signal.h>
    #include <arpa/inet.h>
    #include <sys/socket.h>
    #include <sys/stat.h>
    #include <sys/time.h>
    #include <fcntl.h>
    
    //iso
    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    
    //others
    #include "curl/curl.h"
    }
    
    //c++
    #include <iostream>
    #include <string>
    #include <fstream>
    #include "rapidjson/document.h"
    #include "rapidjson/stringbuffer.h"
    #include "rapidjson/writer.h"
    
    #define psln(x) std::cout << #x " = " << (x) << std::endl
    
    using namespace std;
    
    size_t WriteFunction(void *input, size_t uSize, size_t uCount, void *arg) {
        size_t uLen = uSize * uCount;
        string *pStr = (string*) (arg);
        pStr->append((char*) (input), uLen);
        return uLen;
    }
    
    int main(int argc,char **argv){
        if(argc<3){
            printf("usage:./a.out uri pic
    ");
            exit(-1);
        }
        CURL *pCurl = NULL;
        CURLcode code;
        code = curl_global_init(CURL_GLOBAL_DEFAULT);
        if (code != CURLE_OK) {
            cout << "curl global init err" << endl;
            return -1;
        }
        pCurl = curl_easy_init();
        if (pCurl == NULL) {
            cout << "curl easy init err" << endl;
            return -1;
        }
    
        curl_slist *pHeaders = NULL;
        string sBuffer;
        string header = "username:tla001";
        pHeaders = curl_slist_append(pHeaders, header.c_str());
    
        ifstream in;
        in.open(argv[2], ios::in | ios::binary);
        if (!in.is_open()) {
            printf("open err
    ");
            exit(-1);
        }
        in.seekg(0, ios_base::end);
        const size_t maxSize = in.tellg();
        in.seekg(0);
        char * picBin = new char[maxSize];
        in.read(picBin, maxSize);
        in.close();
        cout << maxSize << endl;
    
        size_t sendSize = maxSize + sizeof(size_t);
        char *sendBuff = new char[sendSize];
        //    sprintf(sendBuff, "%d", maxSize);
        memcpy(sendBuff, &maxSize, sizeof(size_t));
        //    size_t tmp = 0;
        //    memcpy(&tmp, sendBuff, sizeof(size_t));
        //    cout << "tmp=" << tmp << endl;
        memcpy(sendBuff + sizeof(size_t), picBin, maxSize);
        curl_easy_setopt(pCurl, CURLOPT_URL, argv[1]);
        curl_easy_setopt(pCurl, CURLOPT_HTTPHEADER, pHeaders);
        curl_easy_setopt(pCurl, CURLOPT_TIMEOUT, 20);
        //    curl_easy_setopt(pCurl, CURLOPT_HEADER, 1);
        curl_easy_setopt(pCurl, CURLOPT_POST, 1L);
        curl_easy_setopt(pCurl, CURLOPT_POSTFIELDS, sendBuff);
        curl_easy_setopt(pCurl, CURLOPT_POSTFIELDSIZE, sendSize);
        curl_easy_setopt(pCurl, CURLOPT_WRITEFUNCTION, &WriteFunction);
        curl_easy_setopt(pCurl, CURLOPT_WRITEDATA, &sBuffer);
    
        code = curl_easy_perform(pCurl);
        if (code != CURLE_OK) {
            cout << "curl perform err,retcode="<<code << endl;
            return -1;
        }
        long retcode = 0;
        code = curl_easy_getinfo(pCurl, CURLINFO_RESPONSE_CODE, &retcode);
        if (code != CURLE_OK) {
            cout << "curl perform err" << endl;
            return -1;
        }
        //cout << "[http return code]: " << retcode << endl;
        //cout << "[http context]: " << endl << sBuffer << endl;
        using rapidjson::Document;
        Document doc;
        doc.Parse<0>(sBuffer.c_str());
        if (doc.HasParseError()) {
            rapidjson::ParseErrorCode code = doc.GetParseError();
            psln(code);
            return -1;
        }
        using rapidjson::Value;
        Value &content = doc["content"];
        if (content.IsArray()) {
            for (int i = 0; i < content.Size(); i++) {
                Value &v = content[i];
                assert(v.IsObject());
                cout<<"object "<<"["<<i+1<<"]"<<endl;
                if (v.HasMember("class") && v["class"].IsString()) {
                    cout <<"	[class]:"<<v["class"].GetString()<<endl;
                }
                if (v.HasMember("prob") && v["prob"].IsDouble()) {
                    cout <<"	[prob]:"<<v["prob"].GetDouble()<<endl;
                }
                cout<<"	***************************"<<endl;
                if (v.HasMember("left") && v["left"].IsInt()) {
                    cout <<"	[left]:"<<v["left"].GetInt()<<endl;
                }
                if (v.HasMember("right") && v["right"].IsInt()) {
                    cout <<"	[right]:"<<v["right"].GetInt()<<endl;
                }
                if (v.HasMember("top") && v["top"].IsInt()) {
                    cout <<"	[top]:"<<v["top"].GetInt()<<endl;
                }
                if (v.HasMember("bot") && v["bot"].IsInt()) {
                    cout <<"	[bot]:"<<v["bot"].GetInt()<<endl;
                }
                cout<<endl;
    
            }
        }
    
        delete[] picBin;
        delete[] sendBuff;
        curl_easy_cleanup(pCurl);
    
        curl_global_cleanup();
        return 0;
    }

    server

    main.c

    #include <time.h>
    #include <stdlib.h>
    #include <stdio.h>
    #include <unistd.h>
    #include <signal.h>
    #include <fcntl.h>
    #include <sys/types.h>
    #include <sys/stat.h>
    
    #include "parser.h"
    #include "utils.h"
    #include "cuda.h"
    #include "blas.h"
    #include "connected_layer.h"
    
    extern void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top);
    extern void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, char *outfile, int fullscreen);
    extern void run_voxel(int argc, char **argv);
    extern void run_yolo(int argc, char **argv);
    extern void run_detector(int argc, char **argv);
    extern void run_coco(int argc, char **argv);
    extern void run_writing(int argc, char **argv);
    extern void run_captcha(int argc, char **argv);
    extern void run_nightmare(int argc, char **argv);
    extern void run_dice(int argc, char **argv);
    extern void run_compare(int argc, char **argv);
    extern void run_classifier(int argc, char **argv);
    extern void run_regressor(int argc, char **argv);
    extern void run_char_rnn(int argc, char **argv);
    extern void run_vid_rnn(int argc, char **argv);
    extern void run_tag(int argc, char **argv);
    extern void run_cifar(int argc, char **argv);
    extern void run_go(int argc, char **argv);
    extern void run_art(int argc, char **argv);
    extern void run_super(int argc, char **argv);
    extern void run_lsd(int argc, char **argv);
    
    void average(int argc, char *argv[])
    {
        char *cfgfile = argv[2];
        char *outfile = argv[3];
        gpu_index = -1;
        network net = parse_network_cfg(cfgfile);
        network sum = parse_network_cfg(cfgfile);
    
        char *weightfile = argv[4];   
        load_weights(&sum, weightfile);
    
        int i, j;
        int n = argc - 5;
        for(i = 0; i < n; ++i){
            weightfile = argv[i+5];   
            load_weights(&net, weightfile);
            for(j = 0; j < net.n; ++j){
                layer l = net.layers[j];
                layer out = sum.layers[j];
                if(l.type == CONVOLUTIONAL){
                    int num = l.n*l.c*l.size*l.size;
                    axpy_cpu(l.n, 1, l.biases, 1, out.biases, 1);
                    axpy_cpu(num, 1, l.weights, 1, out.weights, 1);
                    if(l.batch_normalize){
                        axpy_cpu(l.n, 1, l.scales, 1, out.scales, 1);
                        axpy_cpu(l.n, 1, l.rolling_mean, 1, out.rolling_mean, 1);
                        axpy_cpu(l.n, 1, l.rolling_variance, 1, out.rolling_variance, 1);
                    }
                }
                if(l.type == CONNECTED){
                    axpy_cpu(l.outputs, 1, l.biases, 1, out.biases, 1);
                    axpy_cpu(l.outputs*l.inputs, 1, l.weights, 1, out.weights, 1);
                }
            }
        }
        n = n+1;
        for(j = 0; j < net.n; ++j){
            layer l = sum.layers[j];
            if(l.type == CONVOLUTIONAL){
                int num = l.n*l.c*l.size*l.size;
                scal_cpu(l.n, 1./n, l.biases, 1);
                scal_cpu(num, 1./n, l.weights, 1);
                    if(l.batch_normalize){
                        scal_cpu(l.n, 1./n, l.scales, 1);
                        scal_cpu(l.n, 1./n, l.rolling_mean, 1);
                        scal_cpu(l.n, 1./n, l.rolling_variance, 1);
                    }
            }
            if(l.type == CONNECTED){
                scal_cpu(l.outputs, 1./n, l.biases, 1);
                scal_cpu(l.outputs*l.inputs, 1./n, l.weights, 1);
            }
        }
        save_weights(sum, outfile);
    }
    
    void speed(char *cfgfile, int tics)
    {
        if (tics == 0) tics = 1000;
        network net = parse_network_cfg(cfgfile);
        set_batch_network(&net, 1);
        int i;
        time_t start = time(0);
        image im = make_image(net.w, net.h, net.c*net.batch);
        for(i = 0; i < tics; ++i){
            network_predict(net, im.data);
        }
        double t = difftime(time(0), start);
        printf("
    %d evals, %f Seconds
    ", tics, t);
        printf("Speed: %f sec/eval
    ", t/tics);
        printf("Speed: %f Hz
    ", tics/t);
    }
    
    void operations(char *cfgfile)
    {
        gpu_index = -1;
        network net = parse_network_cfg(cfgfile);
        int i;
        long ops = 0;
        for(i = 0; i < net.n; ++i){
            layer l = net.layers[i];
            if(l.type == CONVOLUTIONAL){
                ops += 2l * l.n * l.size*l.size*l.c * l.out_h*l.out_w;
            } else if(l.type == CONNECTED){
                ops += 2l * l.inputs * l.outputs;
            }
        }
        printf("Floating Point Operations: %ld
    ", ops);
        printf("Floating Point Operations: %.2f Bn
    ", (float)ops/1000000000.);
    }
    
    void oneoff(char *cfgfile, char *weightfile, char *outfile)
    {
        gpu_index = -1;
        network net = parse_network_cfg(cfgfile);
        int oldn = net.layers[net.n - 2].n;
        int c = net.layers[net.n - 2].c;
        scal_cpu(oldn*c, .1, net.layers[net.n - 2].weights, 1);
        scal_cpu(oldn, 0, net.layers[net.n - 2].biases, 1);
        net.layers[net.n - 2].n = 9418;
        net.layers[net.n - 2].biases += 5;
        net.layers[net.n - 2].weights += 5*c;
        if(weightfile){
            load_weights(&net, weightfile);
        }
        net.layers[net.n - 2].biases -= 5;
        net.layers[net.n - 2].weights -= 5*c;
        net.layers[net.n - 2].n = oldn;
        printf("%d
    ", oldn);
        layer l = net.layers[net.n - 2];
        copy_cpu(l.n/3, l.biases, 1, l.biases +   l.n/3, 1);
        copy_cpu(l.n/3, l.biases, 1, l.biases + 2*l.n/3, 1);
        copy_cpu(l.n/3*l.c, l.weights, 1, l.weights +   l.n/3*l.c, 1);
        copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + 2*l.n/3*l.c, 1);
        *net.seen = 0;
        save_weights(net, outfile);
    }
    
    void oneoff2(char *cfgfile, char *weightfile, char *outfile, int l)
    {
        gpu_index = -1;
        network net = parse_network_cfg(cfgfile);
        if(weightfile){
            load_weights_upto(&net, weightfile, 0, net.n);
            load_weights_upto(&net, weightfile, l, net.n);
        }
        *net.seen = 0;
        save_weights_upto(net, outfile, net.n);
    }
    
    void partial(char *cfgfile, char *weightfile, char *outfile, int max)
    {
        gpu_index = -1;
        network net = parse_network_cfg(cfgfile);
        if(weightfile){
            load_weights_upto(&net, weightfile, 0, max);
        }
        *net.seen = 0;
        save_weights_upto(net, outfile, max);
    }
    
    #include "convolutional_layer.h"
    void rescale_net(char *cfgfile, char *weightfile, char *outfile)
    {
        gpu_index = -1;
        network net = parse_network_cfg(cfgfile);
        if(weightfile){
            load_weights(&net, weightfile);
        }
        int i;
        for(i = 0; i < net.n; ++i){
            layer l = net.layers[i];
            if(l.type == CONVOLUTIONAL){
                rescale_weights(l, 2, -.5);
                break;
            }
        }
        save_weights(net, outfile);
    }
    
    void rgbgr_net(char *cfgfile, char *weightfile, char *outfile)
    {
        gpu_index = -1;
        network net = parse_network_cfg(cfgfile);
        if(weightfile){
            load_weights(&net, weightfile);
        }
        int i;
        for(i = 0; i < net.n; ++i){
            layer l = net.layers[i];
            if(l.type == CONVOLUTIONAL){
                rgbgr_weights(l);
                break;
            }
        }
        save_weights(net, outfile);
    }
    
    void reset_normalize_net(char *cfgfile, char *weightfile, char *outfile)
    {
        gpu_index = -1;
        network net = parse_network_cfg(cfgfile);
        if (weightfile) {
            load_weights(&net, weightfile);
        }
        int i;
        for (i = 0; i < net.n; ++i) {
            layer l = net.layers[i];
            if (l.type == CONVOLUTIONAL && l.batch_normalize) {
                denormalize_convolutional_layer(l);
            }
            if (l.type == CONNECTED && l.batch_normalize) {
                denormalize_connected_layer(l);
            }
            if (l.type == GRU && l.batch_normalize) {
                denormalize_connected_layer(*l.input_z_layer);
                denormalize_connected_layer(*l.input_r_layer);
                denormalize_connected_layer(*l.input_h_layer);
                denormalize_connected_layer(*l.state_z_layer);
                denormalize_connected_layer(*l.state_r_layer);
                denormalize_connected_layer(*l.state_h_layer);
            }
        }
        save_weights(net, outfile);
    }
    
    layer normalize_layer(layer l, int n)
    {
        int j;
        l.batch_normalize=1;
        l.scales = calloc(n, sizeof(float));
        for(j = 0; j < n; ++j){
            l.scales[j] = 1;
        }
        l.rolling_mean = calloc(n, sizeof(float));
        l.rolling_variance = calloc(n, sizeof(float));
        return l;
    }
    
    void normalize_net(char *cfgfile, char *weightfile, char *outfile)
    {
        gpu_index = -1;
        network net = parse_network_cfg(cfgfile);
        if(weightfile){
            load_weights(&net, weightfile);
        }
        int i;
        for(i = 0; i < net.n; ++i){
            layer l = net.layers[i];
            if(l.type == CONVOLUTIONAL && !l.batch_normalize){
                net.layers[i] = normalize_layer(l, l.n);
            }
            if (l.type == CONNECTED && !l.batch_normalize) {
                net.layers[i] = normalize_layer(l, l.outputs);
            }
            if (l.type == GRU && l.batch_normalize) {
                *l.input_z_layer = normalize_layer(*l.input_z_layer, l.input_z_layer->outputs);
                *l.input_r_layer = normalize_layer(*l.input_r_layer, l.input_r_layer->outputs);
                *l.input_h_layer = normalize_layer(*l.input_h_layer, l.input_h_layer->outputs);
                *l.state_z_layer = normalize_layer(*l.state_z_layer, l.state_z_layer->outputs);
                *l.state_r_layer = normalize_layer(*l.state_r_layer, l.state_r_layer->outputs);
                *l.state_h_layer = normalize_layer(*l.state_h_layer, l.state_h_layer->outputs);
                net.layers[i].batch_normalize=1;
            }
        }
        save_weights(net, outfile);
    }
    
    void statistics_net(char *cfgfile, char *weightfile)
    {
        gpu_index = -1;
        network net = parse_network_cfg(cfgfile);
        if (weightfile) {
            load_weights(&net, weightfile);
        }
        int i;
        for (i = 0; i < net.n; ++i) {
            layer l = net.layers[i];
            if (l.type == CONNECTED && l.batch_normalize) {
                printf("Connected Layer %d
    ", i);
                statistics_connected_layer(l);
            }
            if (l.type == GRU && l.batch_normalize) {
                printf("GRU Layer %d
    ", i);
                printf("Input Z
    ");
                statistics_connected_layer(*l.input_z_layer);
                printf("Input R
    ");
                statistics_connected_layer(*l.input_r_layer);
                printf("Input H
    ");
                statistics_connected_layer(*l.input_h_layer);
                printf("State Z
    ");
                statistics_connected_layer(*l.state_z_layer);
                printf("State R
    ");
                statistics_connected_layer(*l.state_r_layer);
                printf("State H
    ");
                statistics_connected_layer(*l.state_h_layer);
            }
            printf("
    ");
        }
    }
    
    void denormalize_net(char *cfgfile, char *weightfile, char *outfile)
    {
        gpu_index = -1;
        network net = parse_network_cfg(cfgfile);
        if (weightfile) {
            load_weights(&net, weightfile);
        }
        int i;
        for (i = 0; i < net.n; ++i) {
            layer l = net.layers[i];
            if (l.type == CONVOLUTIONAL && l.batch_normalize) {
                denormalize_convolutional_layer(l);
                net.layers[i].batch_normalize=0;
            }
            if (l.type == CONNECTED && l.batch_normalize) {
                denormalize_connected_layer(l);
                net.layers[i].batch_normalize=0;
            }
            if (l.type == GRU && l.batch_normalize) {
                denormalize_connected_layer(*l.input_z_layer);
                denormalize_connected_layer(*l.input_r_layer);
                denormalize_connected_layer(*l.input_h_layer);
                denormalize_connected_layer(*l.state_z_layer);
                denormalize_connected_layer(*l.state_r_layer);
                denormalize_connected_layer(*l.state_h_layer);
                l.input_z_layer->batch_normalize = 0;
                l.input_r_layer->batch_normalize = 0;
                l.input_h_layer->batch_normalize = 0;
                l.state_z_layer->batch_normalize = 0;
                l.state_r_layer->batch_normalize = 0;
                l.state_h_layer->batch_normalize = 0;
                net.layers[i].batch_normalize=0;
            }
        }
        save_weights(net, outfile);
    }
    
    void mkimg(char *cfgfile, char *weightfile, int h, int w, int num, char *prefix)
    {
        network net = load_network(cfgfile, weightfile, 0);
        image *ims = get_weights(net.layers[0]);
        int n = net.layers[0].n;
        int z;
        for(z = 0; z < num; ++z){
            image im = make_image(h, w, 3);
            fill_image(im, .5);
            int i;
            for(i = 0; i < 100; ++i){
                image r = copy_image(ims[rand()%n]);
                rotate_image_cw(r, rand()%4);
                random_distort_image(r, 1, 1.5, 1.5);
                int dx = rand()%(w-r.w);
                int dy = rand()%(h-r.h);
                ghost_image(r, im, dx, dy);
                free_image(r);
            }
            char buff[256];
            sprintf(buff, "%s/gen_%d", prefix, z);
            save_image(im, buff);
            free_image(im);
        }
    }
    
    void visualize(char *cfgfile, char *weightfile)
    {
        network net = parse_network_cfg(cfgfile);
        if(weightfile){
            load_weights(&net, weightfile);
        }
        visualize_network(net);
    #ifdef OPENCV
        cvWaitKey(0);
    #endif
    }
    
    int running=0;
    int exitFlag=0;
    void sigHandle(int signal){
        if(signal==SIGUSR1){
            printf("rec SIGUSR1
    ");
            running=1;
        }
         if(signal==SIGINT){
            printf("rec SIGINT
    ");
            exitFlag=1;
        }
    }
    int main(int argc, char **argv)
    {
        gpu_index = find_int_arg(argc, argv, "-i", 0);
        if(find_arg(argc, argv, "-nogpu")) {
            gpu_index = -1;
        }
    
    #ifndef GPU
        gpu_index = -1;
    #else
        if(gpu_index >= 0){
            cuda_set_device(gpu_index);
        }
    #endif
    
        float thresh = find_float_arg(argc, argv, "-thresh", .24);
        char *filename ="test.jpg";
        char *outfile = find_char_arg(argc, argv, "-out", 0);
        int fullscreen = find_arg(argc, argv, "-fullscreen");
        char *cfgfile="cfg/yolo.cfg";
        char *weightfile="yolo.weights";
        char *datacfg="cfg/coco.data";
        float hier_thresh=0.5;
         list *options = read_data_cfg(datacfg);
        char *name_list = option_find_str(options, "names", "data/names.list");
        char **names = get_labels(name_list);
    
        image **alphabet = load_alphabet();
        network net = parse_network_cfg(cfgfile);
        if(weightfile){
            load_weights(&net, weightfile);
        }
        set_batch_network(&net, 1);
        srand(2222222);
        clock_t time;
        char buff[256];
        char *input = buff;
        int j;
        float nms=.4;
        int ret;
        int childPid=0;
        if((ret=fork())<0)
            exit(-1);
        else if(ret==0){
            printf("child pid :%d
    ",childPid=getpid());
            printf("parent pid:%d
    ",getppid());
            ServerRun();
        }
    
        if(signal(SIGUSR1,sigHandle)==SIG_ERR){
            perror("set signal err");
        }
         if(signal(SIGINT,sigHandle)==SIG_ERR){
            perror("set signal err");
        }
    
        const char * FIFO_NAME="/tmp/myfifo";
        if(access(FIFO_NAME,F_OK)==-1){
            int res=mkfifo(FIFO_NAME,0777);
            if(res!=0){
                printf("could not create fifo
    ");
                exit(-1);
            }
        }
        int fifo_fd=open(FIFO_NAME,O_WRONLY);
        
    
        layer l = net.layers[net.n-1];
    
        box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
        float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
        for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes + 1, sizeof(float *));
    
        while(!exitFlag){
            while(!running){
                if(exitFlag)
                    break;
                sleep(1);
            }
            if(exitFlag)
                break;
            if(filename){
                strncpy(input, filename, 256);
            } 
            image im = load_image_color(input,0,0);
            image sized = letterbox_image(im, net.w, net.h);
            //image sized = resize_image(im, net.w, net.h);
            //image sized2 = resize_max(im, net.w);
            //image sized = crop_image(sized2, -((net.w - sized2.w)/2), -((net.h - sized2.h)/2), net.w, net.h);
            //resize_network(&net, sized.w, sized.h);
           
    
            float *X = sized.data;
            time=clock();
            network_predict(net, X);
            printf("%s: Predicted in %f seconds.
    ", input, sec(clock()-time));
            get_region_boxes(l, im.w, im.h, net.w, net.h, thresh, probs, boxes, 0, 0, hier_thresh, 1);
            if (nms) do_nms_obj(boxes, probs, l.w*l.h*l.n, l.classes, nms);
            //else if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms);
            draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes);
            if(outfile){
                save_image(im, outfile);
            }
            else{
                save_image(im, "predictions");
    #ifdef OPENCV
                cvNamedWindow("predictions", CV_WINDOW_NORMAL); 
                if(fullscreen){
                    cvSetWindowProperty("predictions", CV_WND_PROP_FULLSCREEN, CV_WINDOW_FULLSCREEN);
                }
                show_image(im, "predictions");
                cvWaitKey(2000);
                cvDestroyAllWindows();
    #endif
            }
    
            free_image(im);
            free_image(sized);
           
            // if (filename) break;
            running=0;
            int res=write(fifo_fd,"1",1);
            if(res==-1){
                printf("write fifo err
    ");
                // exit(-1);
            }
        }
        if(kill(childPid,9)==0){
            waitpid(childPid,NULL,0);
        }
    
        close(fifo_fd);
        free(boxes);
        free_ptrs((void **)probs, l.w*l.h*l.n);
    
        return 0;
    }

    eventserver.c

    /*
     * eventserver.c
     *
     *  Created on: Jun 13, 2017
     *      Author: tla001
     */
    #include <unistd.h>
    #include <sys/types.h>
    #include <time.h>
    #include <errno.h>
    #include <stdio.h>
    #include <signal.h>
    #include <sys/socket.h>
    #include <sys/stat.h>
    #include <sys/time.h>
    #include <fcntl.h>
    #include <netinet/in.h>
    #include <arpa/inet.h>
    
    //iso
    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    
    //others
    #include <event2/event-config.h>
    #include <event2/bufferevent.h>
    #include <event2/buffer.h>
    #include <event2/listener.h>
    #include <event2/util.h>
    #include <event2/event.h>
    #include <event2/http.h>
    #include <event2/keyvalq_struct.h>
    #include <event2/http_struct.h>
    #include <event2/buffer_compat.h>
    
    #include "cJSON.h"
    
    void test_request_cb(struct evhttp_request *req, void *arg) {
        int ppid=getppid();
        int type = evhttp_request_get_command(req);
        const char *requestUri = evhttp_request_get_uri(req);
        if (EVHTTP_REQ_GET == type) {
            printf("method:GET uri:%s
    ", requestUri);
        } else if (EVHTTP_REQ_POST == type) {
            printf("method:POST uri:%s
    ", requestUri);
        }
    
        char *post_data = (char *) EVBUFFER_DATA(req->input_buffer);
    //    printf("post data: %s", post_data);
        size_t maxSize = 0;
        memcpy(&maxSize, post_data, sizeof(size_t));
    
    
        FILE *fp = fopen("test.jpg", "wb");
        fwrite(post_data + sizeof(size_t), 1, maxSize, fp);
        fclose(fp);
        kill(ppid,SIGUSR1);
        const char *FIFO_NAME="/tmp/myfifo";
        int fifo_fd=open(FIFO_NAME,O_RDONLY);
        char tmp=0;
        int res=read(fifo_fd,&tmp,1);
        if(res==-1){
            printf("read err
    ");
            goto THISEXIT;
        }
        close(fifo_fd);
        printf("fifo tmp=%c
    ", tmp);
        char *resData="rec";
        if(tmp=='1'){
            FILE *fp=fopen("res.json","rb");
            if(fp==NULL)
                goto THISEXIT;
            fseek(fp,0,SEEK_END);
            size_t size=ftell(fp);
            rewind(fp);
            resData=NULL;
            resData=(char*)malloc(sizeof(char)*size+1);
            int readSize=fread(resData,1,size,fp);
            if(readSize!=size){
                printf("read err
    ");
            }
            resData[sizeof(char)*size]='';
            printf("%s
    ", resData);
            fclose(fp);
        }
        
    
    
        printf("rec data len:%d
    ", strlen(resData));
        struct evbuffer *buf1 = evbuffer_new();
        evbuffer_add_printf(buf1, resData);
        evhttp_send_reply(req, 200, "OK", buf1);
        if(resData&&tmp=='1')
            free(resData);
        return ;
    THISEXIT:
        kill(ppid,SIGINT);
            
        exit(-1);
    }
    void ServerRun() {
        int port = 5555;
    
        struct event_base *base;
        struct evhttp *http;
        struct evhttp_bound_socket *handle;
    
        if (signal(SIGPIPE, SIG_IGN) == SIG_ERR) {
            printf("signal error,error[%d],error[%s]", errno, strerror(errno));
            exit(-1);
        }
        base = event_base_new();
        if (!base) {
            printf("create an event_base err
    ");
            exit(-1);
        }
        http = evhttp_new(base);
        if (!http) {
            printf("create evhttp err
    ");
            exit(-1);
        }
        evhttp_set_cb(http, "/test", test_request_cb, NULL);
    
        handle = evhttp_bind_socket_with_handle(http, "0.0.0.0", port);
        if (!handle) {
            printf("bind to port[%d] err
    ", port);
            exit(-1);
        }
    
        {
            struct sockaddr_storage ss;
            evutil_socket_t fd;
            ev_socklen_t socklen = sizeof(ss);
            char addrbuf[128];
            void *inaddr;
            const char *addr;
            int got_port = -1;
            fd = evhttp_bound_socket_get_fd(handle);
            memset(&ss, 0, sizeof(ss));
            if (getsockname(fd, (struct sockaddr*) &ss, &socklen)) {
                perror("getsockname failed");
                exit(-1);
            }
            if (ss.ss_family == AF_INET) {
                got_port = ntohs(((struct sockaddr_in*) &ss)->sin_port);
                inaddr = &((struct sockaddr_in*) &ss)->sin_addr;
            } else if (ss.ss_family == AF_INET6) {
                got_port = ntohs(((struct sockaddr_in6*) &ss)->sin6_port);
                inaddr = &((struct sockaddr_in6*) &ss)->sin6_addr;
            } else {
                printf("Weird address family
    ");
                exit(1);
            }
    
            addr = evutil_inet_ntop(ss.ss_family, inaddr, addrbuf, sizeof(addrbuf));
            if (addr) {
                printf("Listening on %s:%d
    ", addr, got_port);
            } else {
                printf("evutil_inet_ntop failed
    ");
                exit(-1);
            }
        }
        event_base_dispatch(base);
    }

    image.c修改一下函数

    void draw_detections(image im, int num, float thresh, box *boxes, float **probs, char **names, image **alphabet, int classes)
    {
    
        int i;
        cJSON *res=cJSON_CreateObject();
        cJSON *content,*rec;
        cJSON_AddItemToObject(res,"content",content=cJSON_CreateArray());
        for(i = 0; i < num; ++i){
            int class = max_index(probs[i], classes);
            float prob = probs[i][class];
            if(prob > thresh){
    
                int width = im.h * .012;
    
                if(0){
                    width = pow(prob, 1./2.)*10+1;
                    alphabet = 0;
                }
    
                //printf("%d %s: %.0f%%
    ", i, names[class], prob*100);
                // printf("%s: %.0f%%
    ", names[class], prob*100);
                int offset = class*123457 % classes;
                float red = get_color(2,offset,classes);
                float green = get_color(1,offset,classes);
                float blue = get_color(0,offset,classes);
                float rgb[3];
    
                //width = prob*20+2;
    
                rgb[0] = red;
                rgb[1] = green;
                rgb[2] = blue;
                box b = boxes[i];
    
                int left  = (b.x-b.w/2.)*im.w;
                int right = (b.x+b.w/2.)*im.w;
                int top   = (b.y-b.h/2.)*im.h;
                int bot   = (b.y+b.h/2.)*im.h;
    
                if(left < 0) left = 0;
                if(right > im.w-1) right = im.w-1;
                if(top < 0) top = 0;
                if(bot > im.h-1) bot = im.h-1;
    
                cJSON_AddItemToObject(content,"rec",rec=cJSON_CreateObject());
                cJSON_AddStringToObject(rec,"class",names[class]);
                cJSON_AddNumberToObject(rec,"prob",prob*100);
                cJSON_AddNumberToObject(rec,"left",left);
                cJSON_AddNumberToObject(rec,"right",right);
                cJSON_AddNumberToObject(rec,"top",top);
                cJSON_AddNumberToObject(rec,"bot",bot);
    
                draw_box_width(im, left, top, right, bot, width, red, green, blue);
                if (alphabet) {
                    image label = get_label(alphabet, names[class], (im.h*.03)/10);
                    draw_label(im, top + width, left, label, rgb);
                    free_image(label);
                }
            }
        }
        char *resStr=cJSON_Print(res);
        cJSON_Delete(res);
        // printf("%s
    ", resStr);
        FILE *fp=fopen("res.json","wb");
        fwrite(resStr,1,strlen(resStr),fp);
        fclose(fp);
    }

    Makefile做了必要的修改

    GPU=1
    CUDNN=1
    OPENCV=1
    DEBUG=0
    
    ARCH= -gencode arch=compute_20,code=[sm_20,sm_21] 
          -gencode arch=compute_30,code=sm_30 
          -gencode arch=compute_35,code=sm_35 
          -gencode arch=compute_50,code=[sm_50,compute_50] 
          -gencode arch=compute_52,code=[sm_52,compute_52]
    
    # This is what I use, uncomment if you know your arch and want to specify
    # ARCH=  -gencode arch=compute_52,code=compute_52
    
    VPATH=./src/
    EXEC=myapp
    OBJDIR=./obj/
    
    CC=gcc
    NVCC=nvcc 
    OPTS=-Ofast
    LDFLAGS= -lm -pthread -L/usr/local/libevent/lib -levent
    COMMON=-I/usr/local/libevent/include 
    CFLAGS=-Wall -Wfatal-errors 
    
    ifeq ($(DEBUG), 1) 
    OPTS=-O0 -g
    endif
    
    CFLAGS+=$(OPTS)
    
    ifeq ($(OPENCV), 1) 
    COMMON+= -DOPENCV
    CFLAGS+= -DOPENCV
    LDFLAGS+= `pkg-config --libs opencv` 
    COMMON+= `pkg-config --cflags opencv` 
    endif
    
    ifeq ($(GPU), 1) 
    COMMON+= -DGPU -I/usr/local/cuda/include/
    CFLAGS+= -DGPU
    LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
    endif
    
    ifeq ($(CUDNN), 1) 
    COMMON+= -DCUDNN 
    CFLAGS+= -DCUDNN
    LDFLAGS+= -lcudnn
    endif
    
    OBJ=main.o eventserver.o cJSON.o gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o detection_layer.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o detector.o layer.o compare.o regressor.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o demo.o tag.o cifar.o go.o batchnorm_layer.o art.o region_layer.o reorg_layer.o lsd.o super.o voxel.o tree.o
    ifeq ($(GPU), 1) 
    LDFLAGS+= -lstdc++ 
    OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
    endif
    
    OBJS = $(addprefix $(OBJDIR), $(OBJ))
    DEPS = $(wildcard src/*.h) Makefile
    
    all: obj backup results $(EXEC)
    
    $(EXEC): $(OBJS)
    	$(CC) $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS)
    
    $(OBJDIR)%.o: %.c $(DEPS)
    	$(CC) $(COMMON) $(CFLAGS) -c $< -o $@
    
    $(OBJDIR)%.o: %.cu $(DEPS)
    	$(NVCC) $(ARCH) $(COMMON) --compiler-options "$(CFLAGS)" -c $< -o $@
    
    obj:
    	mkdir -p obj
    backup:
    	mkdir -p backup
    results:
    	mkdir -p results
    
    .PHONY: clean
    
    clean:
    	rm -rf $(OBJS) $(EXEC)
    

      

      在使用进程控制的时候,有一些防止出错的机制。

    本项目涉及的技术yolo检测  --libevent http server --libcurl http client --http json

  • 相关阅读:
    主线程——main线程
    进程和线程概念及原理
    抓取网贷之家的数据爬虫
    感知哈希算法的java实现
    最短路径—Dijkstra算法和Floyd算法
    关于图像特征提取
    hive学习之WordCount单词统计
    pig、hive以及hbase的作用
    zookeeper入门知识
    hadoop文件系统浅析
  • 原文地址:https://www.cnblogs.com/tla001/p/7008230.html
Copyright © 2011-2022 走看看