zoukankan      html  css  js  c++  java
  • Leetcode: 879. Profitable Schemes

    Description

    There are G people in a gang, and a list of various crimes they could commit.
    
    The i-th crime generates a profit[i] and requires group[i] gang members to participate.
    
    If a gang member participates in one crime, that member can't participate in another crime.
    
    Let's call a profitable scheme any subset of these crimes that generates at least P profit, and the total number of gang members participating in that subset of crimes is at most G.
    
    How many schemes can be chosen?  Since the answer may be very large, return it modulo 10^9 + 7.
    

    Example

    Input: G = 5, P = 3, group = [2,2], profit = [2,3]
    Output: 2
    Explanation: 
    To make a profit of at least 3, the gang could either commit crimes 0 and 1, or just crime 1.
    In total, there are 2 schemes.
    

    Note

    1 <= G <= 100
    0 <= P <= 100
    1 <= group[i] <= 100
    0 <= profit[i] <= 100
    1 <= group.length = profit.length <= 100
    

    分析

        这道题目虽然是 hard 级别,但是比一般 medium 级别题目要简单。就是一般的 二维 dp,即 dp[g][p]. 关键的优化点是  在 p 大于等于 P 时,不在细分 p 
    

    code

        def profitableSchemes(self, G, P, g, p):
            """
            :type G: int
            :type P: int
            :type group: List[int]
            :type profit: List[int]
            :rtype: int
            """
            dp = [[0 for _ in range(P+1)] for _ in range(G+1)]
    
            for i, _ in enumerate(p):
                if g[i] > G:
                    continue
                for j in range(G, g[i]-1, -1):
                    if p[i] >= P:
                        dp[j][P] += sum(dp[j-g[i]])
                    else:
                        dp[j][P] += sum(dp[j-g[i]][P-p[i]:])
                    for k in range(p[i], P):
                        dp[j][k] += dp[j-g[i]][k-p[i]]
    
                if p[i] >= P:
                    dp[g[i]][P] += 1
                else:
                    dp[g[i]][p[i]] += 1
    
            return sum([d[P] for d in dp])%1000000007
        
    
    

    总结

    Runtime: 668 ms, faster than 100.00% of Python online submissions for Profitable Schemes.
    Memory Usage: 13.1 MB, less than 75.00% of Python online submissions for Profitable Schemes.
    Next challenges:
    
  • 相关阅读:
    2021“MINIEYE杯”中国大学生算法设计超级联赛2
    2021“MINIEYE杯”中国大学生算法设计超级联赛1
    2021牛客暑期多校训练营3
    2021牛客暑期多校训练营1
    对点分治的一些新理解
    使用均摊分析证明Splay复杂度
    从实际项目中学设计模式:策略模式与模板模式的应用
    ueditor编辑器html模式下无法保存内容
    记录一次项目开发中遇到的问题
    加解密代码
  • 原文地址:https://www.cnblogs.com/tmortred/p/13234434.html
Copyright © 2011-2022 走看看