String painter
Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1312 Accepted Submission(s): 554
Problem Description
There are two strings A and B with equal length. Both strings are made up of lower case letters. Now you have a powerful string painter. With the help of the painter, you can change a segment of characters of a string to any other character you want. That is, after using the painter, the segment is made up of only one kind of character. Now your task is to change A to B using string painter. What’s the minimum number of operations?
Input
Input contains multiple cases. Each case consists of two lines:
The first line contains string A.
The second line contains string B.
The length of both strings will not be greater than 100.
The first line contains string A.
The second line contains string B.
The length of both strings will not be greater than 100.
Output
A single line contains one integer representing the answer.
Sample Input
zzzzzfzzzzz
abcdefedcba
abababababab
cdcdcdcdcdcd
Sample Output
6
7
Source
在程序编写过程中有很多问题,需要理解一下。
1 for(len=2;len<=n;len++)//枚举长度 2 { 3 for(j=len-1;j<n;j++)//枚举终点 4 { 5 i=j-len+1;//起点 6 dp[i][j]=dp[i+1][j]+1; 7 for(k=i+1;k<=j;k++) 8 { 9 if(b[i]==b[k]) 10 { 11 dp[i][j]=Min(dp[i][j],dp[i+1][k]+dp[k+1][j]); 12 } 13 } 14 } 15 }
比较
1 for(i=0;i<n;i++) 2 { 3 for(j=i+1;j<n;j++) 4 { 5 for(k=i+1;k<=j;k++) 6 { 7 if(b[i]==b[k]) 8 { 9 dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k+1][j]); 10 } 11 } 12 } 13 }
前者第一个枚举长度,紧接着是枚举终点,和起始点。
后者直接根据递推: dp[ i ] [ j ] = min(dp[i ] [ j ], dp[ i ] [ k ]+dp[ k+1] [ j ]);来做。
两者差异很大,但是感觉后者的不会错,实际上却是有问题的。
因为在更新的过程中,用到的 dp[ k+1] [ j ],可能是没有被更新的。
当dp[ k+1] [ j ]被更新的时候,包含他的所有的dp[ ] [ ] 都没有被更新。
所有要长度开始枚举。
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<cstdlib> 5 using namespace std; 6 7 int ans[102]; 8 int dp[102][102]; 9 char a[103],b[103]; 10 int main() 11 { 12 int i,j,n,len,k; 13 while(scanf("%s%s",a,b)>0) 14 { 15 n=strlen(a); 16 memset(dp,0,sizeof(dp)); 17 memset(ans,0,sizeof(ans)); 18 19 for(i=0;i<n;i++) 20 dp[i][i]=1; 21 for(len=2;len<=n;len++) 22 { 23 for(j=len-1;j<n;j++) 24 { 25 i=j-len+1; 26 dp[i][j]=dp[i+1][j]+1; 27 for(k=i+1;k<=j;k++) 28 { 29 if(b[i]==b[k]) 30 { 31 if(k==j) 32 dp[i][j]=min(dp[i][j],dp[i+1][k]); 33 else 34 dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k+1][j]); 35 } 36 } 37 } 38 } 39 for(i=0;i<n;i++) 40 ans[i]=dp[0][i]; 41 for(i=0;i<n;i++) 42 { 43 if(a[i]==b[i]) 44 ans[i]=ans[i-1]; 45 else 46 { 47 for(j=0;j<=i;j++) 48 ans[i]=min(ans[i],ans[j]+dp[j+1][i]); 49 } 50 } 51 printf("%d ",ans[n-1]); 52 } 53 return 0; 54 }