zoukankan      html  css  js  c++  java
  • spoj 3871. GCD Extreme 欧拉+积性函数

    3871. GCD Extreme

    Problem code: GCDEX

    Given the value of N, you will have to find the value of G. The meaning of G is given in the following code

    G=0;

    for(k=i;k< N;k++)

    for(j=i+1;j<=N;j++)

    {

    G+=gcd(k,j);

    }

    /*Here gcd() is a function that finds the greatest common divisor of the two input numbers*/

    Input

    The input file contains at most 20000 lines of inputs. Each line contains an integer N (1<n<1000001). the="" meaning="" of="" n="" is="" given="" in="" problem="" statement.="" input="" terminated="" by="" a="" line="" containing="" single="" zero.="" <h3="">Output

    For each line of input produce one line of output. This line contains the value of G for the corresponding N. The value of G will fit in a 64-bit signed integer.

    Example

    Input:
    10
    100
    200000
    0
    
    Output:
    67
    13015
    143295493160

    题意:

    G=0;

    for(k=i;k< N;k++)

    for(j=i+1;j<=N;j++)

    {

    G+=gcd(k,j);

    }

    思路: G[n] = sigma( d|n  phi[d]*(n/d) ); 这个能求出S[n]的值,累加求和就行。

       关键在于G[n]函数能用筛选来做,因为是积性函数。

    两种筛选方法,一种TLE,一种ac。

    超时代码:

     1 #include<iostream>
     2 #include<stdio.h>
     3 #include<cstring>
     4 #include<cstdlib>
     5 using namespace std;
     6 typedef long long LL;
     7 
     8 const int maxn = 1000000+3;
     9 LL G[maxn];
    10 int opl[maxn];
    11 void init()
    12 {
    13     LL i,j;
    14     for(i=2;i<maxn;i++) opl[i] = i;
    15     for(i=2;i<maxn;i++)
    16     {
    17         if(opl[i]==i)
    18         {
    19             for(j=i;j<maxn;j=j+i)
    20                 opl[j]=opl[j]/i*(i-1);
    21         }
    22         for(j=1;i*j<maxn;j++)
    23             G[j*i] = G[j*i] + opl[i]*j;
    24     }
    25     for(i=3;i<maxn;i++)
    26         G[i] +=G[i-1];
    27 }
    28 int main()
    29 {
    30     init();
    31     int T,n;
    32     while(scanf("%d",&n)>0)
    33     {
    34         printf("%lld
    ",G[n]);
    35     }
    36     return 0;
    37 }
    View Code

    AC代码: 

     1 #include<iostream>
     2 #include<stdio.h>
     3 #include<cstring>
     4 #include<cstdlib>
     5 using namespace std;
     6 typedef long long LL;
     7 
     8 const int maxn = 1e6+3;
     9 int phi[maxn];
    10 LL g[maxn];
    11 void init()
    12 {
    13     for(int i=1;i<maxn;i++) phi[i] = i;
    14     for(int i=2;i<maxn;i++)
    15     {
    16         if(phi[i]==i) phi[i] = i-1;
    17         else continue;
    18         for(int j=i+i;j<maxn;j=j+i)
    19             phi[j] = phi[j]/i*(i-1);
    20     }
    21     for(int i=1;i<maxn;i++) g[i] = phi[i];
    22     for(int i=2;i<=1000;i++)
    23     {
    24         for(LL j=i*i,k=i;j<maxn;j=j+i,k++)
    25         if(i!=k)
    26             g[j] = g[j] + phi[i]*k + phi[k]*i;
    27         else g[j] = g[j] + phi[i]*k;
    28     }
    29     g[1] = 0;
    30     for(int i=2;i<maxn;i++) g[i] = g[i]+g[i-1];
    31 }
    32 int main()
    33 {
    34     init();
    35     int T,n;
    36     scanf("%d",&T);
    37     while(T--)
    38     {
    39         scanf("%d",&n);
    40         printf("%lld
    ",g[n]);
    41     }
    42     return 0;
    43 }
  • 相关阅读:
    WTL之CAppModule
    WTL之窗口子类化
    专业的日志系统该包含什么?
    ATL之什么是套间
    Java线程新特征之同步
    Java之用句柄操作对象
    Android之Application Fundamentals
    Android之Dev Guide
    一些思考
    WTL之窗口超类化(父类化)
  • 原文地址:https://www.cnblogs.com/tom987690183/p/3946212.html
Copyright © 2011-2022 走看看