3871. GCD ExtremeProblem code: GCDEX |
Given the value of N, you will have to find the value of G. The meaning of G is given in the following code
G=0;
for(k=i;k< N;k++)
for(j=i+1;j<=N;j++)
{
G+=gcd(k,j);
}
/*Here gcd() is a function that finds the greatest common divisor of the two input numbers*/
Input
The input file contains at most 20000 lines of inputs. Each line contains an integer N (1<n<1000001). the="" meaning="" of="" n="" is="" given="" in="" problem="" statement.="" input="" terminated="" by="" a="" line="" containing="" single="" zero.="" <h3="">Output
For each line of input produce one line of output. This line contains the value of G for the corresponding N. The value of G will fit in a 64-bit signed integer.
Example
Input: 10 100 200000 0 Output: 67 13015 143295493160
题意:
G=0;
for(k=i;k< N;k++)
for(j=i+1;j<=N;j++)
{
G+=gcd(k,j);
}
思路: G[n] = sigma( d|n phi[d]*(n/d) ); 这个能求出S[n]的值,累加求和就行。
关键在于G[n]函数能用筛选来做,因为是积性函数。
两种筛选方法,一种TLE,一种ac。
超时代码:
1 #include<iostream> 2 #include<stdio.h> 3 #include<cstring> 4 #include<cstdlib> 5 using namespace std; 6 typedef long long LL; 7 8 const int maxn = 1000000+3; 9 LL G[maxn]; 10 int opl[maxn]; 11 void init() 12 { 13 LL i,j; 14 for(i=2;i<maxn;i++) opl[i] = i; 15 for(i=2;i<maxn;i++) 16 { 17 if(opl[i]==i) 18 { 19 for(j=i;j<maxn;j=j+i) 20 opl[j]=opl[j]/i*(i-1); 21 } 22 for(j=1;i*j<maxn;j++) 23 G[j*i] = G[j*i] + opl[i]*j; 24 } 25 for(i=3;i<maxn;i++) 26 G[i] +=G[i-1]; 27 } 28 int main() 29 { 30 init(); 31 int T,n; 32 while(scanf("%d",&n)>0) 33 { 34 printf("%lld ",G[n]); 35 } 36 return 0; 37 }
AC代码:
1 #include<iostream> 2 #include<stdio.h> 3 #include<cstring> 4 #include<cstdlib> 5 using namespace std; 6 typedef long long LL; 7 8 const int maxn = 1e6+3; 9 int phi[maxn]; 10 LL g[maxn]; 11 void init() 12 { 13 for(int i=1;i<maxn;i++) phi[i] = i; 14 for(int i=2;i<maxn;i++) 15 { 16 if(phi[i]==i) phi[i] = i-1; 17 else continue; 18 for(int j=i+i;j<maxn;j=j+i) 19 phi[j] = phi[j]/i*(i-1); 20 } 21 for(int i=1;i<maxn;i++) g[i] = phi[i]; 22 for(int i=2;i<=1000;i++) 23 { 24 for(LL j=i*i,k=i;j<maxn;j=j+i,k++) 25 if(i!=k) 26 g[j] = g[j] + phi[i]*k + phi[k]*i; 27 else g[j] = g[j] + phi[i]*k; 28 } 29 g[1] = 0; 30 for(int i=2;i<maxn;i++) g[i] = g[i]+g[i-1]; 31 } 32 int main() 33 { 34 init(); 35 int T,n; 36 scanf("%d",&T); 37 while(T--) 38 { 39 scanf("%d",&n); 40 printf("%lld ",g[n]); 41 } 42 return 0; 43 }