zoukankan      html  css  js  c++  java
  • hdoj 3336 Count the string【kmp算法求前缀在原字符串中出现总次数】

    Count the string

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 6062    Accepted Submission(s): 2810


    Problem Description
    It is well known that AekdyCoin is good at string problems as well as number theory problems. When given a string s, we can write down all the non-empty prefixes of this string. For example:
    s: "abab"
    The prefixes are: "a", "ab", "aba", "abab"
    For each prefix, we can count the times it matches in s. So we can see that prefix "a" matches twice, "ab" matches twice too, "aba" matches once, and "abab" matches once. Now you are asked to calculate the sum of the match times for all the prefixes. For "abab", it is 2 + 2 + 1 + 1 = 6.
    The answer may be very large, so output the answer mod 10007.
     

     

    Input
    The first line is a single integer T, indicating the number of test cases.
    For each case, the first line is an integer n (1 <= n <= 200000), which is the length of string s. A line follows giving the string s. The characters in the strings are all lower-case letters.
     

     

    Output
    For each case, output only one number: the sum of the match times for all the prefixes of s mod 10007.
     

     

    Sample Input
    1
    4
    abab
     

     

    Sample Output
    6
    #include<stdio.h>
    #include<string.h>
    #define mod 10007
    #define MAX 200010
    char p[MAX];
    int f[MAX];
    int dp[MAX];
    void getfail()
    {
    	int i,j;
    	f[0]=f[1]=0;
    	int len=strlen(p);
    	for(i=1;i<len;i++)
    	{
    		j=f[i];
    		while(j&&p[i]!=p[j])
    		j=f[j];
    		f[i+1]=p[i]==p[j]?j+1:0;
    	}
    }
    int main()
    {
    	int n,m,j,i,s,t;
    	scanf("%d",&t);
    	while(t--)
    	{
    		scanf("%d",&n);
    		scanf("%s",p);
    		getfail();
    		s=0;
    		dp[0]=0;
    		for(i=1;i<=n;i++)
    		{
    			dp[i]=(dp[f[i]]%mod+1)%mod;
    			s=(s%mod+dp[i]%mod)%mod;
    		}
    		printf("%d
    ",s);
    	}
    	return 0;
    }
    
  • 相关阅读:
    堆排序优先级队列
    贪心算法装载问题
    贪心算法最小生成树
    贪心算法活动安排
    回文质数
    堆排序算法
    递归算法排列问题
    排序算法
    贪心算法Dijkstra
    贪心算法哈夫曼编码
  • 原文地址:https://www.cnblogs.com/tonghao/p/4670877.html
Copyright © 2011-2022 走看看