The sum problem
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 19608 Accepted Submission(s): 5786
Problem Description
Given a sequence 1,2,3,......N, your job is to calculate all the possible sub-sequences that the sum of the sub-sequence is M.
Input
Input contains multiple test cases. each case contains two integers N, M( 1 <= N, M <= 1000000000).input ends with N = M = 0.
Output
For each test case, print all the possible sub-sequence that its sum is M.The format is show in the sample below.print a blank line after each test case.
Sample Input
20 10
50 30
0 0
Sample Output
[1,4]
[10,10]
[4,8]
[6,9]
[9,11]
[30,30]
Author
8600
题意:给两个值n,m,表示一个长度为n的数列,让你从这个数列中找出所有连续的子序列使他们的和为m
题解:见我这篇博客
#include<stdio.h> #include<string.h> #include<math.h> #include<algorithm> #define MAX 1001000 using namespace std; struct node { int a,b; }s[MAX]; bool cmp(node x,node y) { return x.a<y.a; } int main() { int n,m,j,i,t,k; t=0; while(scanf("%d%d",&n,&m),n|m) { int ans=sqrt(2*n); int x;k=0; for(i=1;i<=ans;i++) { x=(2*m+i-i*i)/2/i; if((2*x+i-1)*i==2*m&&x>0&&(i%2==0||(2*x+i-1)%2==0)) { s[k].a=x; s[k++].b=x+(i-1); } } sort(s,s+k,cmp); for(i=0;i<k;i++) printf("[%d,%d] ",s[i].a,s[i].b); t++; printf(" "); } return 0; }