zoukankan      html  css  js  c++  java
  • poj 3264 Balanced Lineup(RMQ裸题)

    Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 43168   Accepted: 20276
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    #include<stdio.h>
    #include<string.h>
    #include<vector>
    #include<map>
    #include<queue>
    #include<stack>
    #include<cstdio> 
    #include<string>
    #include<math.h>
    #include<algorithm>
    #define LL long long
    #define PI atan(1.0)*4
    #define DD double
    #define MAX 100100
    #define mod 10003
    #define INF 0x3f3f3f3f
    using namespace std;
    int a[MAX];
    int n,m;
    int Max[MAX][50],Min[MAX][50];
    void RMQ()
    {
    	int i,j;
    	for(i=1;i<=n;i++)
    	    Max[i][0]=Min[i][0]=a[i];
    	for(j=1;(1<<j)<=n;j++)
    	{
    		for(i=1;i+(1<<j)-1<=n;i++)
    		{
    			Max[i][j]=max(Max[i][j-1],Max[i+(1<<(j-1))][j-1]);
    			Min[i][j]=min(Min[i][j-1],Min[i+(1<<(j-1))][j-1]);
    		}
    	}
    }
    int find(int l,int r)
    {
    	int k=0;
    	while(1<<(k+1)<=r-l+1) k++;
    	return max(Max[l][k],Max[r-(1<<k)+1][k])-min(Min[l][k],Min[r-(1<<k)+1][k]);
    }
    int main()
    {
    	int i,j,t,k,c,b;
    	while(scanf("%d%d",&n,&m)!=EOF)
    	{
    		for(i=1;i<=n;i++)
    		    scanf("%d",&a[i]);
    		RMQ();
    		while(m--)
    		{
    			scanf("%d%d",&c,&b);
    			printf("%d
    ",find(c,b));
    		}
    	}
    	return 0;
    }
    

      

  • 相关阅读:
    iOS应用崩溃日志分析
    iOS应用崩溃日志分析
    iOS 获取一个类的所有方法
    iOS 获取一个类的所有方法
    UVa 818Cutting Chains (暴力dfs+位运算+二进制法)
    UVa 1374 Power Calculus (IDA*或都打表)
    UVa 10603 Fill (暴力BFS+优先队列)
    HDU 1272 小希的迷宫 (并查集)
    HDU 1060 Leftmost Digit (数学log)
    UVa 1599 Ideal Path (两次BFS)
  • 原文地址:https://www.cnblogs.com/tonghao/p/5370085.html
Copyright © 2011-2022 走看看