zoukankan      html  css  js  c++  java
  • poj 3264 Balanced Lineup(RMQ裸题)

    Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 43168   Accepted: 20276
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    #include<stdio.h>
    #include<string.h>
    #include<vector>
    #include<map>
    #include<queue>
    #include<stack>
    #include<cstdio> 
    #include<string>
    #include<math.h>
    #include<algorithm>
    #define LL long long
    #define PI atan(1.0)*4
    #define DD double
    #define MAX 100100
    #define mod 10003
    #define INF 0x3f3f3f3f
    using namespace std;
    int a[MAX];
    int n,m;
    int Max[MAX][50],Min[MAX][50];
    void RMQ()
    {
    	int i,j;
    	for(i=1;i<=n;i++)
    	    Max[i][0]=Min[i][0]=a[i];
    	for(j=1;(1<<j)<=n;j++)
    	{
    		for(i=1;i+(1<<j)-1<=n;i++)
    		{
    			Max[i][j]=max(Max[i][j-1],Max[i+(1<<(j-1))][j-1]);
    			Min[i][j]=min(Min[i][j-1],Min[i+(1<<(j-1))][j-1]);
    		}
    	}
    }
    int find(int l,int r)
    {
    	int k=0;
    	while(1<<(k+1)<=r-l+1) k++;
    	return max(Max[l][k],Max[r-(1<<k)+1][k])-min(Min[l][k],Min[r-(1<<k)+1][k]);
    }
    int main()
    {
    	int i,j,t,k,c,b;
    	while(scanf("%d%d",&n,&m)!=EOF)
    	{
    		for(i=1;i<=n;i++)
    		    scanf("%d",&a[i]);
    		RMQ();
    		while(m--)
    		{
    			scanf("%d%d",&c,&b);
    			printf("%d
    ",find(c,b));
    		}
    	}
    	return 0;
    }
    

      

  • 相关阅读:
    __setattr__,__getattr__,__delattr__
    LeetCode 面试题42. 连续子数组的最大和
    LeetCode 53. 最大子序和
    LeetCode 面试题39. 数组中出现次数超过一半的数字
    LeetCode 169. 多数元素
    LeetCode 426.将二叉搜索树转化为排序的双向链表
    LeetCode 面试题36. 二叉搜索树与双向链表
    LeetCode 面试题35. 复杂链表的复制
    LeetCode 138. 复制带随机指针的链表
    LeetCode 面试题34. 二叉树中和为某一值的路径
  • 原文地址:https://www.cnblogs.com/tonghao/p/5370085.html
Copyright © 2011-2022 走看看