zoukankan      html  css  js  c++  java
  • POJ #1141

    A bottom-up DP. To be honest, it is not easy to relate DP to this problem. Maybe, all "most""least" problems can be solved using DP..

    Reference: http://blog.sina.com.cn/s/blog_8e6023de01014ptz.html

    There's an important details to AC: in case of "())", there are 2 solutions: ()() and (()). For the AC code, the former one is preferred.

    //    1141
    //    http://blog.sina.com.cn/s/blog_8e6023de01014ptz.html
    //
    #include <stdio.h>
    #include <string.h>
    #include <memory.h>
    
    #define MAX_LEN 101 
     
     bool isMatched(char *in, int i, int j)
     {
         return (in[i] == '(' && in[j] == ')') || (in[i] == '[' && in[j] == ']');
     }
     void printPath(int path[MAX_LEN][MAX_LEN], int i, int j, char in[MAX_LEN])
    {
         int sInx = path[i][j];
         if (sInx == -1)
         {
             if (i == j)
             {
                 //printf("Complete @ %d
    ", i);
                 switch (in[i])
                 {
                 case '(': 
                 case ')': printf("()"); break;
                 case '[': 
                 case ']': printf("[]"); break;
                 }
                 return;
            }        
             else if (i + 1 == j)
             {
                 //printf("Already matched: [%d, %d]
    ", i, j);
                 printf("%c%c", in[i], in[j]);
                 return;
             }
             else if ((i+1) < j)
             {
                 printf("%c", in[i]);
                 printPath(path, i + 1, j - 1, in);
                 printf("%c", in[j]);
             }
         }
         else
         {
             printPath(path, 0, path[i][j], in);
             //printf("Break @ %d
    ", path[i][j], in);
             printPath(path, path[i][j] + 1, j, in);
         }
     }
     
     void calc(char in[MAX_LEN])
     {
         unsigned slen = strlen(in);
         if (slen == 0)
         {
             printf("
    ");
             return;
         }
         else if (slen > 0)
         {
             int dp[MAX_LEN][MAX_LEN];
             int path[MAX_LEN][MAX_LEN];
     
             //    Init
             for (int i = 0; i < MAX_LEN; i ++)
             for (int j = 0; j < MAX_LEN; j++)
             {
                 dp[i][j] = 0xFFFFFF;
                 path[i][j] = -1;
             }
     
             //    Def: dp[i][j] = min num of chars to add, from i to j
             //    Recurrence relation:
             //    1. dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j]), where k in (i..j)
             //    2. dp[i][j] = dp[i+1][j-1], <IF in[i]:in[j] = [] or ()>
     
             //    i..j is range, k is interval
             for (int k = 0; k < slen; k++)    // NOTE: this is a bottom-up DP. We have to go from 0 to slen as interval
             for (int i = 0, j = i + k; i < slen - k; i ++, j ++)
             {
                 if (i == j)
                 {
                     dp[i][j] = 1;
                     path[i][j] = -1;
                     continue;
                 }
                 bool bIsMatched = isMatched(in, i, j);
                 if (bIsMatched)        // eq 2
                 {
                     if (k == 1)        // length == 2 
                     {
                         dp[i][j] = 0;    
                         path[i][j] = -1;
                         continue;
                     }
                     else if (k > 1)    // length > 2
                     {
                         dp[i][j] = dp[i + 1][j - 1];                                        
                         path[i][j] = -1;    // we don't split matched pair
                         //    A: we still go ahead with eq1
                     }                
                 }
                 //else    // eq1
                 {
                     //    t is iterator of split index
                     for (int t = i; t < j; t++)
                     {
                         int newVal = dp[i][t] + dp[t + 1][j];
                         if (newVal <= dp[i][j]) // Label A: we prefer splitted solution
                         {
                             dp[i][j] = newVal;
                             path[i][j] = t;
                         }
                     }
                 }
             }
             printPath(path, 0, slen - 1, in);
         } //    if (slen > 0)
     }
     
     int main()
    {
         char in[MAX_LEN] = { 0 };
         gets(in);
         calc(in);
         printf("
    ");
         return 0;
    }
    View Code
  • 相关阅读:
    康复计划
    Leetcode 08.02 迷路的机器人 缓存加回溯
    Leetcode 38 外观数列
    Leetcode 801 使序列递增的最小交换次数
    Leetcode 1143 最长公共子序列
    Leetcode 11 盛水最多的容器 贪心算法
    Leetcode 1186 删除一次得到子数组最大和
    Leetcode 300 最长上升子序列
    Leetcode95 不同的二叉搜索树II 精致的分治
    Leetcode 1367 二叉树中的列表 DFS
  • 原文地址:https://www.cnblogs.com/tonix/p/3806001.html
Copyright © 2011-2022 走看看