zoukankan      html  css  js  c++  java
  • POJ #2411

    Good reference: http://www.cppblog.com/sdfond/archive/2009/07/31/91761.html

    It is a classic coveragedp compression problem. Initially I thought of dp[i][j] (i is row, j is col), but looks like it was not feasible to have a good dp transition function. Instead, the correct way to have dp[i][j] is: i is row still, but j is the state - state is binary representation which is said to be compressed (please check url above). It is just not that easy to figure out the key idea: valid state transition from row i to row i + 1.

    First, a recursion procedure is used to compose all valid state transitions - bits by bits. And keep the transition restrictions in mind, we add two more full-state rows: row(0) and row(n+1) to make sure no tile exceeds the limit. At last, we pick row(n+1)(all-1-full-state)'s value which indicates a final valid state. And each dp move means a solution count accumulation.

    Really interesting dp problem. And here is the AC code - since i'm still rookie, i just retyped almost everything in the url above :P

    //    POJ 2411
    //    http://www.cppblog.com/sdfond/archive/2009/07/31/91761.html
    
    #include <cstdio>
    #include <cstdlib>
    #include <vector>
    #include <algorithm>
    using namespace std;
    
    #define MAX_N 11
    #define MAX_SIZE (1 << MAX_N)
    typedef unsigned long long uint64_t;
    
    vector<unsigned> rec[MAX_SIZE];    // s2 -> [s1]: for a dest state s2, recording all its previous valid s1 states
    uint64_t dp[MAX_N + 2][MAX_SIZE];
    
    //    Compose all valid s1->s2 transition by making composing every move valid
    //    Note: a pattern of combinations by recurrence
    void dfs(int col, int s1, int s2, int w, uint64_t MaxState)
    {
        if (col >= w)
        {
            if (s1 <= MaxState && s2 <= MaxState)
                rec[s2].push_back(s1);    //    S1->S2 is a valid transition
            return;
        }
    
        dfs(col + 1, (s1 << 1) | 1, s2 << 1, w, MaxState);
        dfs(col + 1, s1 << 1, (s2 << 1) | 1, w, MaxState);
        dfs(col + 2, (s1 << 2) | 3, (s2 << 2) | 3, w, MaxState);
    }
    
    uint64_t calc(int h, int w)
    {
        uint64_t MaxState = (1 << w) - 1;
    
        //    Reset rec
        for (int i = 0; i <= MaxState; i ++)
            rec[i].clear();
    
        //    DFS precalc - all valid state transitions
        dfs(0, 0, 0, w, MaxState);
    
        //    Go DP
        dp[0][0] = 1;    // row 0 added to start with
        for (int i = 1; i <= h + 1; i++)    //    each row
        for (uint64_t s = 0; s <= MaxState; s ++)    // each state
        for (int k = 0; k < rec[s].size(); k ++)
        {
            dp[i][s] += dp[i - 1][rec[s][k]];
        }
        return dp[h+1][MaxState];
    }
    
    int main()
    {
        int w, h;
        while (scanf("%d %d", &h, &w), h && w)
        {
            if (h > w) std::swap(h, w);
            memset(dp, 0, sizeof(dp));
            printf("%llu
    ", calc(h, w));
        }
    
        return 0;
    }
    View Code
  • 相关阅读:
    pipelinewise 学习二 创建一个简单的pipeline
    pipelinewise 学习一 docker方式安装
    Supercharging your ETL with Airflow and Singer
    ubuntu中使用 alien安装rpm包
    PipelineWise illustrates the power of Singer
    pipelinewise 基于singer 指南的的数据pipeline 工具
    关于singer elt 的几篇很不错的文章
    npkill 一个方便的npm 包清理工具
    kuma docker-compose 环境试用
    kuma 学习四 策略
  • 原文地址:https://www.cnblogs.com/tonix/p/3828969.html
Copyright © 2011-2022 走看看