zoukankan      html  css  js  c++  java
  • HackerRank

    It is modulo version of "max sum of contiguous subarray". So similar pattern can be applied too, but with tricks regarding to modulo ops.

    I checked editorials, and found that, the quickcorrect solution requires sharp insight into internal characteristics and mechanism of one problem... which I'm still lack with...

    Modulo, you should feel of it is as a roll-over game. If within the scope, like (3 - 1)%3, there's nothing special; and if beyond the scope like (1 - 3)%3, you get it roll-over from the beginning..

    And another key trick is, std::lower_bound() upon std::set is slower than set::lower_bound()..

    #include <cmath>
    #include <cstdio>
    #include <vector>
    #include <map>
    #include <set>
    #include <unordered_set>
    #include <string>
    #include <climits>
    #include <iostream>
    #include <algorithm>
    #include <unordered_map>
    #include <unordered_set>
    using namespace std;
    
    int dp(vector<int> &in, int m)
    {
        int ret = 0;
        size_t len = in.size();
    
        vector<int> dp(len, 0);
    
        for (int ilen = 1; ilen <= len; ilen ++)
        for (int i = 0; i <= len - ilen; i++)
        {
            dp[i] += in[i + ilen - 1];
            ret = std::max(ret, dp[i] % m);
        }
        return ret;
    }
    
    int main()
    {
        int t; cin >> t;
        while (t--)
        {
            long long n, m; cin >> n >> m;
        
            long long x, prefix = 0, ret = 0;
            set<long long> s;
            s.insert(0);
            for (int i = 0; i < n; i++)
            {
                cin >> x;
                prefix = (prefix + x) % m;
                
                //    Case 1: prefix - 0 
                //        (for smaller prefixes)
                ret = std::max(ret, prefix); 
    
                //    Case 2: prefix - smallest_larer + m 
                //        (for larger prefixes)
                auto it = s.lower_bound(prefix + 1);
                if (it != s.end())
                {
                    ret = std::max(ret, prefix - *it + m);
                }
    
                s.insert(prefix);
            }
            cout << ret << endl;
        }
        return 0;
    }
  • 相关阅读:
    pair和map
    lower_bound( )和upper_bound( )
    P1886 滑动窗口 /【模板】单调队列
    数的度(数位dp)
    最小生成树
    刷题-力扣-1052. 爱生气的书店老板
    刷题-力扣-766. 托普利茨矩阵
    刷题-力扣-28. 实现 strStr()
    刷题-力扣-697. 数组的度
    刷题-力扣-1004. 最大连续1的个数 III
  • 原文地址:https://www.cnblogs.com/tonix/p/4522240.html
Copyright © 2011-2022 走看看