zoukankan      html  css  js  c++  java
  • HackerRank

    It is modulo version of "max sum of contiguous subarray". So similar pattern can be applied too, but with tricks regarding to modulo ops.

    I checked editorials, and found that, the quickcorrect solution requires sharp insight into internal characteristics and mechanism of one problem... which I'm still lack with...

    Modulo, you should feel of it is as a roll-over game. If within the scope, like (3 - 1)%3, there's nothing special; and if beyond the scope like (1 - 3)%3, you get it roll-over from the beginning..

    And another key trick is, std::lower_bound() upon std::set is slower than set::lower_bound()..

    #include <cmath>
    #include <cstdio>
    #include <vector>
    #include <map>
    #include <set>
    #include <unordered_set>
    #include <string>
    #include <climits>
    #include <iostream>
    #include <algorithm>
    #include <unordered_map>
    #include <unordered_set>
    using namespace std;
    
    int dp(vector<int> &in, int m)
    {
        int ret = 0;
        size_t len = in.size();
    
        vector<int> dp(len, 0);
    
        for (int ilen = 1; ilen <= len; ilen ++)
        for (int i = 0; i <= len - ilen; i++)
        {
            dp[i] += in[i + ilen - 1];
            ret = std::max(ret, dp[i] % m);
        }
        return ret;
    }
    
    int main()
    {
        int t; cin >> t;
        while (t--)
        {
            long long n, m; cin >> n >> m;
        
            long long x, prefix = 0, ret = 0;
            set<long long> s;
            s.insert(0);
            for (int i = 0; i < n; i++)
            {
                cin >> x;
                prefix = (prefix + x) % m;
                
                //    Case 1: prefix - 0 
                //        (for smaller prefixes)
                ret = std::max(ret, prefix); 
    
                //    Case 2: prefix - smallest_larer + m 
                //        (for larger prefixes)
                auto it = s.lower_bound(prefix + 1);
                if (it != s.end())
                {
                    ret = std::max(ret, prefix - *it + m);
                }
    
                s.insert(prefix);
            }
            cout << ret << endl;
        }
        return 0;
    }
  • 相关阅读:
    C# 接口
    C# 多态
    C# 继承
    C# 封装
    动态规划:从新手到专家
    hduoj题目分类
    4.2 最邻近规则分类(K-Nearest Neighbor)KNN算法应用
    警惕自增的陷阱(++)
    五大常用算法之四:回溯法
    算法java实现--回溯法--图的m着色问题
  • 原文地址:https://www.cnblogs.com/tonix/p/4522240.html
Copyright © 2011-2022 走看看