zoukankan      html  css  js  c++  java
  • HackerRank

    First I thought it should be solved using DP, and I gave a standard O(n^2) solution:

    #include <iostream>
    #include <vector>
    #include <algorithm>
    #include <numeric>
    using namespace std;
    
    #define REP(i, s, n) for(int i = s; i < n; i ++)
    typedef long long LL;
    
    LL calc(vector<LL> &in)
    {
        size_t len = in.size();
    
        LL ret = 0;
    
        /*
        //    dp[i][onhand]
        vector<vector<LL>> dp(len, vector<LL>(len + 1, std::numeric_limits<LL>::min()));
        dp[0][0] = 0; // no action
        dp[0][1] = -in[0]; // buy
    
        REP(i, 1, len)
        REP(j, 0, i + 1)
        {
            //    Choice 1: buy
            dp[i][j + 1] = std::max(dp[i][j + 1], dp[i - 1][j] - in[i]); 
            //    Choice 2: no action
            dp[i][j] = std::max(dp[i][j], dp[i - 1][j]);
            //    Choice 3: sell all
            if(j > 0)
                dp[i][0] = std::max(dp[i][0], in[i] * j + dp[i-1][j]);        
        }
        ret = *std::max_element(dp[len-1].begin(), dp[len-1].end());
        */
        vector<LL> pre(len + 1, std::numeric_limits<LL>::min());
        pre[0] = 0; pre[1] = -in[0];
        vector<LL> now(len + 1, std::numeric_limits<LL>::min());
    
        vector<LL> *ppre = &pre, *pnow = &now;
        REP(i, 1, len)
        {
            REP(j, 0, i + 1)
            {
                //    Choice 1: buy
                (*pnow)[j + 1] = std::max((*pnow)[j + 1], (*ppre)[j] - in[i]); 
                //    Choice 2: no action
                (*pnow)[j] = std::max((*pnow)[j], (*ppre)[j]);
                //    Choice 3: sell all
                if(j > 0)
                    (*pnow)[0] = std::max((*pnow)[0], in[i] * j + (*ppre)[j]);    
            }
            // swap
            std::swap(ppre, pnow);
            (*pnow).assign(len + 1, std::numeric_limits<LL>::min());
        }
        ret = *std::max_element((*ppre).begin(), (*ppre).end());
        return ret;
    }
    
    int main()
    {
        int t; cin >> t;
        while(t--)
        {
            int n; cin >> n;
            vector<LL> in(n);
            REP(i, 0, n) cin >> in[i];
            cout << calc(in) << endl;
        }
        return 0;
    }

    But all TLE.. so there are must be a O(n) solution, and there is.. what is better than a standard DP in cerntain cases? Greedy.

    #include <iostream>
    #include <vector>
    #include <algorithm>
    #include <numeric>
    using namespace std;
    
    #define REP(i, s, n) for(int i = s; i < n; i ++)
    typedef long long LL;
    
    LL calc(vector<LL> &in)
    {
        size_t len = in.size();
    
        LL ret = 0;
        std::reverse(in.begin(), in.end());
        LL peak = -1;
        REP(i, 0, len)
        {
            if(in[i] > peak)
            {
                peak = in[i];
            }
            else
            {
                ret += peak - in[i];
            }
        }
        return ret;
    }
    
    int main()
    {
        int t; cin >> t;
        while(t--)
        {
            int n; cin >> n;
            vector<LL> in(n);
            REP(i, 0, n) cin >> in[i];
            cout << calc(in) << endl;
        }
        return 0;
    }
  • 相关阅读:
    Django admin的一些有用定制
    django后台中如何在result_list内优雅的显示及使用过滤器?
    DataFrame 的函数
    pandas的替换和部分替换(replace)
    HTML5中的Web Notification桌面右下角通知功能的实现
    sqlalchemy 实现select for update
    SQLAlchemy 使用经验 (查询 事务 锁表)
    concat()
    某数据防泄漏 越权修改管理员密码
    齐治堡垒机 远程命令执行漏洞[CNVD-2019-20835]
  • 原文地址:https://www.cnblogs.com/tonix/p/4612244.html
Copyright © 2011-2022 走看看