There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
解题思路:
由于要求时间复杂度O(log (m+n))所以几乎可以肯定是递归和分治的思想。
《算法导论》里有找两个数组第K小数的算法,时间复杂度为O(log(m+n)),所以直接调用即可
参考链接:http://blog.csdn.net/yutianzuijin/article/details/11499917/
Java参考代码:
public class Solution { public static double findKth(int[] nums1, int index1, int[] nums2, int index2, int k) { if (nums1.length - index1 > nums2.length - index2) return findKth(nums2, index2, nums1, index1, k); if (nums1.length - index1 == 0) return nums2[index2 + k - 1]; if (k == 1) return Math.min(nums1[index1], nums2[index2]); int p1 = Math.min(k / 2, nums1.length - index1), p2 = k - p1; if (nums1[index1 + p1 - 1] < nums2[index2 + p2 - 1]) return findKth(nums1, index1 + p1, nums2, index2, k - p1); else if (nums1[index1 + p1 - 1] > nums2[index2 + p2 - 1]) return findKth(nums1, index1, nums2, index2 + p2, k - p2); else return nums1[index1 + p1 - 1]; } static public double findMedianSortedArrays(int[] nums1, int[] nums2) { if ((nums1.length + nums2.length) % 2 != 0) return findKth(nums1, 0, nums2, 0, (nums1.length + nums2.length) / 2 + 1); else return findKth(nums1, 0, nums2, 0, (nums1.length + nums2.length) / 2) / 2.0 + findKth(nums1, 0, nums2, 0, (nums1.length + nums2.length) / 2 + 1) / 2.0; } }
C++实现如下:
1 #include<vector> 2 #include<algorithm> 3 using namespace std; 4 class Solution { 5 private: 6 double findKth(vector<int> nums1, int index1, vector<int> nums2, int index2, int k) { 7 if (nums1.size() - index1 > nums2.size() - index2) { 8 swap(nums1, nums2); 9 swap(index1,index2); 10 } 11 if (nums1.size() - index1 == 0) 12 return nums2[index2 + k - 1]; 13 if (k == 1) 14 return min(nums1[index1], nums2[index2]); 15 int p1 = min(k / 2, (int)nums1.size() - index1), p2 = k - p1; 16 if (nums1[index1 + p1 - 1] < nums2[index2 + p2 - 1]) 17 return findKth(nums1, index1 + p1, nums2, index2, k - p1); 18 else if (nums1[index1 + p1 - 1] > nums2[index2 + p2 - 1]) 19 return findKth(nums1, index1, nums2, index2 + p2, k - p2); 20 else 21 return nums1[index1 + p1 - 1]; 22 } 23 24 public: 25 double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) { 26 if ((nums1.size() + nums2.size()) &1) 27 return findKth(nums1, 0, nums2, 0, 28 (nums1.size() + nums2.size()) / 2 + 1); 29 else 30 return findKth(nums1, 0, nums2, 0,(nums1.size() + nums2.size()) / 2)/ 2.0 31 + findKth(nums1, 0, nums2, 0,(nums1.size() + nums2.size()) / 2 + 1) / 2.0; 32 } 33 };